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Abstract: In the present study, an effective numerical method is offered based on the Fourier series for pricing 
the Bermudan transaction option and discrete observation option under Heston stochastic volatility model. In 
fact, it is through introducing Heston Model and by the assistance of Fourier series that the 2D pricing 
formulas of Bermudan transaction option and barrier discrete options are presented. To do so, numerical 
integration regulations are used and the error convergence is investigated through performing numerical 
tests. 
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INTRODUCTION 

The models including the stochastic volatility have been widely used for modeling the transaction options in 

the markets. Amongst these, Heston stochastic volatility models can be pointed out that has been cited in 

(Heston, 1993). In these models, the stock price logarithm is modeled by means of the square root process.  

European option pricing has been particularly more frequently used in contrast to the other transaction 

options. Using the cosine method and by the assistance of Fourier series (Lord et al., 2008; Lord et al., 2009), 

the European option pricing formula and 1D Bermudan option pricing formula can be obtained. To do so, the 

FFT algorithm is applied to enhance the speed and efficiency of the method. The integration methods used in 

this method, as well, are based on the Fourier series and need the possession of a characteristic function 

(Fourier transform of the base stock price’s density probability function).  

The specified function of Heston model has been obtained in (Heston, 1993). Next, the cosine method 

presented in (Lord et al., 2008; Lord et al., 2009) will be utilized for Bermudan transaction option pricing in a 

2D state as well as for discrete observations of barrier transaction option in a general state. The following 

challenges are encountered for doing so by the assistance of the Heston Model: 

1) Nearly unique behavior of the variance probability density: the variance is exhibited in Heston model 

by non-central Chi-square distribution and the variance density severely grows on the left tail 

(sequence) side per some of the corresponding parameters, i.e. the density values are inclined towards 

infinity when variance tends towards zero and the integral limit cut causes a large deal of truncation 

error.  

2) Integration core that is not vividly clear: for path-dependent transaction options, the pricing formula 

needs 2D integration on the stock price and variance logarithm. The joint probability distribution 
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density function does not have a closed-form answer, i.e. it is not clear; so, its characteristic function is 

utilized for determining it.  

3) The complexity of the numerical integration calculations: the direct use of the numerical integration 

rules for the transaction option through premature exertion under the Heston model would lead to the 

complexity of the numerical integration calculations that takes a considerable amount of the 

processor’s time. 

Heston Model: 

The stochastic Heston equations are defined in the form of stock price logarithm dynamics, xt, and variance, 

Vt, as shown below: 

𝑑𝑥𝑡 = (𝜇 −
1

2
𝑣𝑡) 𝑑𝑡 + 𝜌√𝑣𝑡𝑑𝑤1,𝑡 + √1 − 𝜌2√𝑣𝑡𝑑𝑤2,𝑡                  (1) 

𝑑𝑣𝑡 = 𝜆(𝑣 − 𝑣𝑡)𝑑𝑡 + 𝜂√𝑣𝑡𝑑𝑤1,𝑡                                                 (2) 

Where, λ, V and η are three parameters respectively designating the mean reciprocation speed, variance level 

and the turbulence of the volatility process. 𝜔1,𝑡  and 𝜔2,𝑡 are two independent Brownian motions and ρ is the 

correlation between the logarithm of the stock price and variance process. The process √𝜈𝑡 existent in (Lord et 

al., 2008) prevents the Vt values from becoming negative. Feller Condition 22   guarantees that Vt  

remains positive; it means that the variance process will be strictly positive if the Feller condition holds 

otherwise, i.e. if the Feller condition does not hold, the variance process reaches zero border which is 

intensively reflexive. Here, it is assumed that the Feller condition holds. 

Using the relationship:  

𝑝(𝑣𝑡|𝑣𝑠) = 𝜉𝑒−𝑢−𝑣 (
−𝑣

𝑢
)  

𝑞
2 . 𝐼𝑞 [2(𝑢𝑣)

1
2] 

 

From (Cox, Ingersoll and Roosm, 1985) and the definitions: 

𝑞 ≔
2𝜆𝑣

𝜂2
− 1        , 𝜉 =

2𝜆

(1 − 𝑒−𝜆(𝑡−𝑠))𝜂2
 

 

For density function, 𝜈𝑡, on the condition that 𝜈𝑠is available at time s, the following relationship holds: 

(𝑣𝑡|𝑣𝑠) = 𝜉𝑒−𝜉𝑣𝑠𝑒−𝜆(𝑡−𝑠)−𝜉𝑣𝑡(
𝜉𝑣𝑡

𝜉𝑣𝑠𝑒−𝜆(𝑡−𝑠)
) 

𝑞
2𝐼𝑞 [2(𝜉𝑣𝑠𝑒−𝜆(𝑡−𝑠)𝜉𝑣𝑡)

1
2] 

 

Next, (−𝜉) is factored from the first sentence as a factorial agent and the following relationship is obtained 

with the omission of   from the second term and using the radical display of the term 𝐼𝑞(. ): 

(𝑣𝑡|𝑣𝑠) = 𝜉𝑒−𝜉(𝑣𝑠𝑒−𝜆(𝑡−𝑠)+𝑣𝑡)(
𝑣𝑡

𝑣𝑠𝑒−𝜆(𝑡−𝑠)
) 

𝑞
2𝐼𝑞 [2(𝜉2𝑣𝑠𝑣𝑡𝑒−𝜆(𝑡−𝑠))

1
2] 

Resultantly: 

(𝑣𝑡|𝑣𝑠) = 𝜉𝑒−𝜉(𝑣𝑠𝑒−𝜆(𝑡−𝑠)+𝑣𝑡)(
𝑣𝑡

𝑣𝑠𝑒−𝜆(𝑡−𝑠)) 
𝑞

2𝐼𝑞 [2𝜉  𝑒−𝜆/2(𝑡−𝑠)(𝑣𝑠𝑣𝑡)
1

2]                     (3)  

Where, Iq is the first kind modified Bessel function of the rank q and z is defined in the following form therein: 



Specialty J. Eng. Appl. Sci., 2019, Vol, 4 (4): 31-40 

   33 

𝑧 =  2𝜉  𝑒−𝜆/2(𝑡−𝑠)(𝑣𝑠𝑣𝑡)
1
2 

 

Feller condition is equivalent to 0q  because: 

𝑞 ≥ 0    , 𝑞 ≔
2𝜆𝑣

𝜂2
− 1  ≥ 0 →    

2𝜆𝑣

𝜂2
≥ 1   →   2𝜆𝑣   ≥ 𝜂2 

 

Such a behavior on the left tail side might bring about an increase in error, especially for the option pricing 

methods based on integration in which their integration limits need cutting. 

Brody and Kaya offered their exact simulation method in (Broadie and O. Kaya, 2006) for finding the stock 

price logarithm paths. The following relationships can be obtained by the integration of the relations (3-1) and 

(3-2): 

𝑥𝑡 − 𝑥𝑠 = 𝜇(𝑡 − 𝑠) −
1
2

∫ 𝑣𝜏𝑑𝜏𝑡
𝑠 + 𝜌 ∫ √𝑣𝜏𝑑𝜔1,𝜏

𝑡
𝑠 + √1 − 𝜌2 ∫  

𝑡
𝑠 √𝑣𝜏𝑑𝜔2,𝜏                 (4) 

𝑥𝑡 − 𝑥𝑠 = 𝜆𝑣(𝑡 − 𝑠) − 𝜆 ∫ 𝑣𝜏𝑑𝜏𝑡
𝑠 + 𝜂 ∫ √𝑣𝑡𝑑𝜔1,𝜏

𝑡
𝑠                                                   (5) 

Equation (5) can be rewritten in the form of an equation for ∫ √𝜈𝑡
𝑡

𝑠
𝑑𝜔1,𝑇. An exact formula is obtained for 𝑥𝑡 as 

shown below through inserting it in relation (4): 

𝑥𝑡 − 𝑥𝑠 = 𝜆𝑣(𝑡 − 𝑠) − 𝜆 ∫ 𝑣𝜏𝑑𝜏𝑡
𝑠 + 𝜂 ∫ √𝑣𝑡𝑑𝜔1,𝜏 ⇒

𝑡
𝑠         

∫ √𝑣𝑡𝑑𝜔1,𝜏 =
𝑡

𝑠

1

𝜂
 [𝑣𝑡 − 𝑣𝑠 − 𝜆𝑣(𝑡 − 𝑠) + 𝜆 ∫ 𝑣 − 𝜏𝑑𝜏

𝑡

𝑠
]                        

 

It can be concluded by embedding the above relation in (5) that: 

𝑥𝑡 − 𝑥𝑠 = 𝜇(𝑡 − 𝑠) −
1

2
∫ 𝑣𝑡𝑑𝜏

𝑡

𝑠
+

𝜌

𝜂
[𝑣𝑡 − 𝑣𝑠 − 𝜆𝑣(𝑡 − 𝑠) + 𝜆 ∫ 𝑣 − 𝜏𝑑𝜏

𝑡

𝑠
] + 𝜆

𝜌

𝜂
∫ 𝑣𝜏𝑑𝜏

𝑡

𝑠
 ⇒ 

𝑥𝑡 − 𝑥𝑠 = 𝜇(𝑡 − 𝑠) +
𝜌
𝜂

𝑣𝑡 − 𝑣𝑠 − 𝜆𝑣(𝑡 − 𝑠)) + (𝜆 𝜌
𝜂

−
1
2
) ∫ 𝑣𝜏𝑑𝜏𝑡

𝑠 + √1 − 𝜌2 ∫  
𝑡

𝑠 √𝑣𝜏𝑑𝜔2,𝜏                                        (6) 

Equation (6) can be used for a sample of 𝑥𝑡   in a state that the amounts of  𝜈𝑡 and 
t

t T
s

d variance are clear, a 

sample of  𝜈𝑡 can be approximated by non-central chi square distribution. Moreover, a sample of ∫ 𝜈𝑡
𝑡

𝑠
𝑑𝑇can be 

obtained through the retrieval of the characteristic function the closed form of which takes the following form:  

Ф(v, 𝑣𝑡 , 𝑣𝑠) ≔ 𝐸 [𝑒𝑖𝑣 ∫ 𝑣𝜏𝑑𝜏
𝑡

𝑠 |𝑣𝑡 , 𝑣𝑠] 

=

𝐼𝑞 [√𝑣𝑡𝑣𝑠
4𝛾(𝑣)𝑒−

1
2

𝛾(𝑣)(𝑡−𝑠)

𝜂2(1 − 𝑒−𝛾(𝑣)(𝑡−𝑠))
]

𝐼𝑞 [√𝑣𝑡𝑣𝑠
4𝛾𝑒−

1
2

𝛾(𝑡−𝑠)

𝜂2(1 − 𝑒−𝛾(𝑡−𝑠))
]

×
𝛾(𝑣)𝑒−

1
2

(𝛾(𝑣)−𝜆)(𝑡−𝑠)
(1 − 𝑒−𝜆(𝑡−𝑠))

𝜆(1 − 𝑒−𝜆(𝑡−𝑠))
 

 

× exp (
𝑣𝑡+𝑣𝑠

𝜂2 [
𝜆(1+𝑒−𝜆(𝑡−𝑠))

(1−𝑒−𝜆(𝑡−𝑠))
−

𝛾(𝑣)(1+𝑒−𝛾(𝑣)(𝑡−𝑠))

𝜆(1−𝑒−𝛾(𝑣)(𝑡−𝑠))
]                 (7) 

Where, 𝑞 =
2𝜆𝜈

𝜂2  and 𝐼𝑞(𝑥)are the q-order modified Bessel function of the type one and 𝛾(𝜈)is the variable 

defined as demonstrated below: 
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𝛾(𝑣) = √𝜆2 − 2𝑖𝜂2𝑣                                (8) 

Pricing Method for Bermudan Options: 

In this section, a formula is obtained for Bermudan options’ pricing under Heston model that includes a dual 

integral one part of which has the exact answer. In the calculation of this dual integral, a discrete formula is 

used for expanding the Fourier’s cosine series to calculate the integral part of the core that is not clear in 

closed form and the numerical integration is applied for the integral of part of the core that is certain. On the 

other hand, an efficient and effective algorithm is introduced for calculating the discrete formula by the 

assistance of the FFT algorithm.  

1. Transactions’ Pricing: 

For a European option specified for a term s and matured at t wherein 0 < 𝑠 < 𝑡, the risk neutral 

pricing formula takes the following form: 

 

𝑣(𝑥𝑠, 𝜎𝑠, 𝑠) = 𝑒−𝑟(𝑡−𝑠)𝐸𝑠
𝑄[𝑣(𝑥𝑠, 𝜎𝑠, 𝑠)]                      (9) 

 

Where, 𝜈(𝑥𝑠, 𝜎𝑠, 𝑠) is the option price at time s and r is the risk-free interest rate and 𝛦𝑆
𝑄
 is the hope 

operator under the size of the neutral risk Q provided that it contains the information at time s. 

Markov property helps the attainment of a Bermudan option between two premature exertion dates, 

(16), using the neutral risk valuation formula. The arbitrage-free Bermudan option at any premature 

date would be equal to the maximum continuous amount and the option exertion gain. For M 

premature exertion time and  ∆𝑡 ≔ 𝑡𝑚+1 − 𝑡𝑚  𝑎𝑛𝑑   𝑡𝑀 ≡ 𝑇  𝑤𝑖𝑡ℎ  τ ≔ {𝑡𝑚 , 𝑡𝑚  < 𝑡𝑚+1 |𝑚 =

0,1,2, … , 𝑀} , Bermudan option pricing formula takes the following form: 

𝑣(𝑥𝑡𝑚
, 𝜎𝑚, 𝑡𝑚) = {

𝑔(𝑥𝑡𝑚
, 𝑡𝑚)                                                        𝑓𝑜𝑟     𝑚 = 𝑀

 
max [𝑐(𝑥𝑡𝑚

, 𝜎𝑚, 𝑡𝑚), 𝑔(𝑥𝑡𝑚
, 𝑡𝑚)]     𝑓𝑜𝑟 𝑚 = 1,2, … . 𝑀 − 1

𝑐(𝑥𝑡𝑚
, 𝜎𝑚, 𝑡𝑚)                                                         𝑓𝑜𝑟  𝑚 = 0

 

 (10) 

Where, 𝑞(𝑥𝜏, 𝜏)is the gain function at the time 𝜏  and 𝑐(𝑥𝜏, 𝜎𝜏, 𝜏) is the continuous amount at the time 𝜏. 

Next, xm and 𝜎𝑚symbols are used instead of  𝑥𝑡𝑚
 and 𝜎𝑡𝑚

 for simplicity. The continuous amount is also 

shown in the following form: 

 

𝑐(𝑥𝑡𝑚
, 𝜎𝑚, 𝑡𝑚) = 𝑒−𝑟∆𝑡𝐸,𝑡𝑚

𝑄 [𝑣(𝑥 𝑚+1
, 𝜎𝑚+1, 𝑡𝑚+1)]                               (11) 

 

So, it can be written that: 

 

𝑐(𝑥𝑡𝑚
, 𝜎𝑚 , 𝑡𝑚) = 𝑒−𝑟∆𝑡. ∫   

𝑅 ∫ 𝑣(𝑥 𝑚+1
, 𝜎𝑚+1, 𝑡𝑚+1)𝜌𝑥| ln(𝑣)

 (𝑣)(𝑥 𝑚+1
, 𝜎𝑚+1|𝑥 𝑚 , 𝜎𝑚

 
𝑅 )𝑑𝜎𝑚+1𝑑𝑥𝑚+1    

 

(12) 

It can also be written that: 

𝑐(𝑥𝑡𝑚
, 𝜎𝑚, 𝑡𝑚) = 𝑒−𝑟∆𝑡. ∫   

𝑅 [∫ 𝑣(𝑥 𝑚+1
, 𝜎𝑚+1, 𝑡𝑚+1)𝜌𝑥| ln(𝑣)

(𝑥 𝑚+1
|𝜎𝑚+1𝑥 𝑚 , 𝜎𝑚)

 
𝑅  𝑑𝑥𝑚+1] . 𝑝𝑙𝑛(𝑣)(𝜎𝑚+1|𝜎𝑚)𝑑𝜎𝑚+1     

(13) 

Next, the numerical solution of the problem is dealt with based on the equations (10) and (13). The 

internal integral in the above relation is the very pricing formula for the European option defined 

between tm and 𝑡𝑚+1 that specifies the variance amount in a future time. The scaled asset’s logarithm 
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price will be more repeatedly used in the forthcoming sections than before and it is defined in the 

following form: 

𝑥 𝑚 = ln (
𝑆 𝑚

𝐾
) 

 

2. The Density Retrieved based on the Fourier Cosine Expansion: 

The essential idea of the cosine method, as stated in (Lord et al., 2008), is the approximation of the 

base density function that is most often a smooth function giving real quantities. It has to be noted 

that the Fourier series coefficients have direct relationships with the characteristic function. Next, a 

cross-section is defined for span [𝑎, 𝑏] ⊂ ℝ in such a way that it also holds for the following relation, 

i.e.  

 

∫ 𝜌𝑥| ln(𝑣)
 (𝑣)(𝑥 𝑚+1

, 𝜎𝑚+1|𝑥 𝑚 , 𝜎
𝑚

) ≤
𝑏

𝑎
𝑇𝑂𝐿 𝑥                                                (14) 

 

Where, TOLx is the error threshold. The same way that the following interval has been defined in 

(Lord et al., 2008) as a cross-section for span [𝑎, 𝑏] ⊂ ℝof Heston Model, the span is also used herein.  

 

[𝑎, 𝑏] ≔ [𝜉1 − 12√|𝜉2|, 𝜉1 + 1212√|𝜉2|                                                              (15) 

 

Where, 𝜉𝑛denotes the nth indicator of the stock price logarithm process. With the integral interval [a, 

b] that also holds in the above relation, the goal is retrieving the density function by the assistance of 

Fourier Cosine Series Expansion. Assume that:  

 

𝜌𝑥| ln(𝑣)(𝑥 𝑚+1
|𝜎𝑚+1, 𝑥 𝑚 , 𝜎𝑚) = ∑ 𝜌𝑛(

𝑓∞

𝑛=0 (𝜎𝑚+1, 𝑥 𝑚 , 𝜎𝑚)cos (𝑛𝜋
𝑥𝑚+1−𝑎

𝑏−𝑎
)        (16) 

 

Where, ∑′   shows that the first sigma member is multiplied by ½. 𝜌𝑛  is a Fourier cosine coefficient 

that is obtained in the following form, i.e.  

 

𝜌𝑛(𝜎𝑚+1, 𝑥 𝑚 , 𝜎𝑚) ≔
2

𝑏 − 𝑎
∫ 𝜌𝑥| ln(𝑣) (𝑣)(𝑥 𝑚+1

, 𝜎𝑚+1|𝑥 𝑚 , 𝜎𝑚)
𝑏

𝑎

 cos (𝑘𝜋
𝑥𝑚+1 − 𝑎

𝑏 − 𝑎
) 

 

According to the fact that there is a direct relationship between the coefficients and ChF 

(characteristic function) and, on the other hand, it was stated that there is no exact answer for 𝜌𝑥|𝐼𝑛(𝜈), 

the characteristic function defined for the function  𝜌𝑥|𝐼𝑛(𝜈) is used. The term cos(.) can be written in 

the following form: 

 

Real[exp (in𝜋
𝑥𝑚+1−𝑎

𝑏−𝑎
)] =Real[exp(𝑖𝑛𝜋

𝑥𝑚+1

𝑏−𝑎
)exp(−𝑖𝑛𝜋

𝑎

𝑏−𝑎
)] = 𝑅𝑒𝑎𝑙[𝜑 (

𝑛𝜋

𝑏−𝑎
) exp (−𝑖𝑛𝜋

𝑎

𝑏−𝑎
)] 

 

 𝜌𝑛(𝜎𝑚+1, 𝑥 𝑚 , 𝜎𝑚) ≈
2

𝑏−𝑎
𝑅𝑒𝑎𝑙 {𝜑 (

𝑛𝜋

𝑏−𝑎
; 𝑥 𝑚 , 𝜎𝑚+1, 𝜎𝑚) 𝑒𝑥 𝑝 (−𝑖𝑛𝜋

𝑎

𝑏−𝑎
)}                       (17) 

Where, 𝜑(𝜃; 𝑥, 𝜎𝑚+1, 𝜎𝑚)has been obtained. It has to be noted that when the span [a, b] is expanded, pn 

is approximated with a machine precision (device needed for approximation). Next, the sum of the 

series (sigma) is cut in the relations (3) and (22). 

Replacing from relation (16) in relation (17) and cutting the series with N terms, the following formula 

can be obtained which is an appropriate approximation for the intended density function, i.e.  
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𝜌𝑥| ln(𝑣)(𝑥 𝑚+1
|𝜎𝑚+1, 𝑥 𝑚 , 𝜎𝑚) = 

  

   ∑
2

𝑏−𝑎
𝑁−1
𝑛=0 𝑅𝑒𝑎𝑙 {𝜑 (

𝑛𝜋

𝑏−𝑎
; 0, 𝜎𝑚+1, 𝜎𝑚) 𝑒𝑥 𝑝 (𝑖𝑛𝜋

𝑥 𝑚−𝑎

𝑏−𝑎
)} cos (𝑛𝜋 𝑥𝑚+1−𝑎

𝑏−𝑎
) +∈𝑐𝑜𝑠           (18) 

 

Where, the function 

𝜑(𝜔; 𝑥 𝑚 , 𝜎𝑚+1, 𝜎𝑚) = exp (𝑖𝜔 𝑥 𝑚)𝜑(𝜔; 0, 𝜎𝑚+1, 𝜎𝑚) has been used and Xm can be separated from 

the σ–dependent terms and be shown like a simple term. This is very much useful in Bermudan 

calculations. Based on the theorem, the justification of which has been given in (Lord et al., 2009), the 

error of this approximation, i.e. 𝜀cos, exponentially decreases with respect to N provided that the cut 

section is sufficiently large. 

3. Pricing Formula based on Discrete Fourier Transform: 

Equation (10) wherein a formula was constructed for Bermudan option pricing shows that the option 

price is a continuous quantity at the time t0. As it is shown in relation (13), its amount depends on the 

continuous quantity at times 𝑡1, 𝑡2, . . . 𝑡𝑀. The option price at t0 can be retrieved through retrogressive 

reciprocation in time as shown in (Lord et al., 2009).  

Numerical Results: 

The convergence of the obtained error is analyzed assuming l = a ; u = b by means of discrete pricing of the 

barrier transactions’ option. To compute the exact values in a high precision (to the eight decimal), use is 

made of the European option pricing mentioned in (Lord et al., 2008). According to (Andersen, 2008), three 

types of tests are carried out one of which belongs to q>0 and the other two are pertinent to 𝑞 ∈ [−1,0]. 

Test Number One: 𝜂 = 0.5     , 𝜆 = 5      , 𝑣 = 0.04    , 𝑇 = 1       ∶    (𝑞 = −0.84)        
Test Number Two: 𝜂 = 0.5     , 𝜆 = 0.5      , 𝑣 = 0.04    , 𝑇 = 1       ∶    (𝑞 = −0.84) 

Test Number Three: 𝜂 = 1   , 𝜆 = 0.5      , 𝑣 = 0.04    , 𝑇 = 10       ∶    (𝑞 = −0.96) 

The computer used in the present study is a standard laptop with an R input and 2.2GHz processor and a 4-

Gb memory. The numerical methods for premature exertion or exercising of barrier transaction options are 

usually based on the finite difference for PDEs (Ito and Toivanen, 2009) or tree methods (Vellekoop and 

Nieuwenhuis, 2009). The tree-form results and the finite differences for this set of parameters that have been 

introduced in the abovementioend tests are yet to be published. The other parameters that are used for 

showing sales per α=-1, include the following quantities: 

𝜌 = −0.09,   𝑣0 = 0.04, 𝑆0 = 100, 𝐾 = 100, 𝑟 = 0 

Next, error convergence in J is investigated for Heston pricing models based on the numerical integration rule 

of Fauss Legendre.  

Then, a prespecified TOL truncation error threshold is determined per 10−4, 10−6 and 10−8 values. In 

between, the number of the observed dates is set at 12 and N is assumed to be 27. 

Table (1) shows that the error rate is found being decreased per every amount of J when having 𝑇𝑂𝐿 =

10−4and that although the values change about a number, they show a descending trend per every 𝑇𝑂𝐿 ≤

10−6. In the end, when 𝑇𝑂𝐿 ≤ 10−8, the error values start decreasing at a higher speed. Consequently, the 

error is still convergent with the increase in J and the reduction in TOL. The results obtained for q>0 are 

within the limit of a fraction of a second hence featuring a high accuracy. The exact amount for the European 

option is 7.5789038982 as shown in Table (1). 



Specialty J. Eng. Appl. Sci., 2019, Vol, 4 (4): 31-40 

   37 

Table 1: Fourier Cosine Series Transform and Gauss Legendre Rule 

(J=2d ) TOL= 10-2 TOL= 10-6 TOL= 10-8 

d Frror Time (sec) Frror Time (sec) Frror Time (sec) 

4 

5 

6 

7 

-7.51*10-2 

-3.95*10-2 

-3.95*10-2 

-3.95*10-2 

0.12 

0.43 

1.69 

6.88 

1.02*10-2 

-1.85*10-5 

-1.54*10-5 

-1.34*10-5 

0.12 

0.42 

1.59 

7.07 

1.141 

2.99*10-5 

-6.41*10-6 

-6.32*10-7 

0.12 

0.40 

1.54 

6.49 

Table 2: Fourier Cosine Series Transform and Gauss Legendre Rule per the negative q values                                    

 (q = -0.84) test nember2 (q = -0.96) test nember3 

(J=2d )  Time (sec)  Time (sec) 

d Frror Main Input Total Frror Main Input Total 

6 

7 

8 

5.63 

6.89*10-3 

-2.12*10-5 

0.18 

0.18 

4.07 

2.85 

2.85 

52.32 

3.03 

13. 3 

56.4 

-22.7 

-8.51*10-2 

-1.60*10-3 

0.18 

0.53 

4.00 

2.93 

11.55 

51.74 

3.11 

12. 1 

55.7 

Now, the turn comes for the more critical cases of the test wherein 𝑞 → −1 is investigated. For the set of the 

given parameters, the combined trapezoidal axiom (also the combined Simpson rule) is not satisfactory 

because it needs very large quantities of J to reach the desired precision. 

But, the Gauss Legendre rule can give optimal results for small J values. The results obtained from Gauss 

Legendre rule have been numerically shown in Table (2) for variance logarithm aspect wherein  

𝑇𝑂𝐿 = 10−7 𝑎𝑛𝑑   𝑀 = 12   𝑎𝑛𝑑   𝑁 = 1028and the exact values for the European option in the second and the 

third tests are 6.2710582179 and 13.0842710701, respectively. 

In comparison to the test number one, the real error of the second and the third tests were found being 

rapidly decreasing for the same values of J and N. however, the error convergence in J is still very fast. Also, 

the results of Table (2) show that a long calculation time is consumed when 𝑞 → −1, the initial value 

assignment stage; so, it can be stated that it is due to the existence of Bessel Function that a large amount of 

time is consumed for calculation. On the other hand, the calculation time of the primary loop includes less 

than 8% of the total time. 

Table 3: error convergence per the ascending values of M 

Test 
M 

40 20 10 

 test nember1        (q = 0.6) -4.92*10-6 -3.13*10-6 -2.14*10-6 

test nember2     (q = -0.84) -7. 02*10-4 -2.71*10-5 -2.56*10-5 

Table 4: convergence of Bermudan transaction option to the American option per every correlation coefficient 

and fixed q 

S0 8 9 10 11 Time 

10M 2.000000 1.107621 0.520030 0.213677 Total Input Main ring 

M=10 

M=20 

M=40 

M=80 

-1.18*10-2 

-9.54*10-3 

-5.14*10-3 

-2.83*10-3 

-4.79*10-3 

-2.39*10-3 

-1.07*10-3 

-2.86*10-4 

-2.85*10-3 

-1.40*10-3 

-5.50*10-4 

-2.75*10-5 

-1.31*10-3 

-6.65*10-3 

-2.54*10-4 

-5.42*10-5 

6.9 

7.5 

8.9 

14.1 

6.34 

6.36 

6.57 

7.35 

0.57 

1.13 

2.32 

6.70 

Error propagation is investigated per time. To do so, N and J are presumed to be fixed and the error 

convergence is measured for the incremental values of M that have been given in Table (3). The results 
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confirm that the local error grows very slowly for q>0 and it somehow grows rapidly for 𝑞 ∈ [−1,0]; the general 

error is reduced with assigning larger quantities to J and/or N and doubling of Parameter M causes doubling 

of CPU time in the primary loop and the convergence is still established in this state.  

Table 5: convergence of Bermudan transaction option to the American option with a negative q value and 

correlation coefficient 

 S0 Time 

M 90 100 110 Total Input Main ring 

20 

40 

60 

0.9783714 

9.9916484 

9.9957789 

3.204734 

3.2073345 

3.2079202 

0.9273568 

0.9281068 

0.9280425 

68.9 

81.9 

93.2 

58.2 

59.3 

59.4 

10.7 

22.6 

33.8 

 

Bermudan Option Pricing Algorithm: 

Step One: 

Using the relation  ln(𝐸(𝑣𝑡)) = ln [𝑣0 𝑒−𝜆𝑇 + 𝑣(1 − 𝑒−𝜆𝑇)] and assuming 𝑇 = 1, 𝜈0 = 0.04, 𝜈 = 0.04, 𝜆 = 5 values 

for the first test and 𝑇 = 1, 𝜈0 = 0.04, 𝜈 = 0.04, 𝜆 = 0.5values for the second and the third tests, three values are 

obtained for 𝑙𝑛(𝐸(𝜈𝑡))per every test; embedding of each value in the relation [𝑎𝑣
0, 𝑏𝑣

0] = [  ln 𝐸(𝑣𝑡) −
5

1+𝑞
, ln 𝐸(𝑣𝑡) +

2

1+𝑞
]   , and setting q equal to 0.6 for the first test, equal to -0.84 for the second test and equal to -

0.96 for the third test gives the [a, b] span. 

Step Two: 

Assuming the sale state for Bermudan Option, its gain function can be written in the form of  𝑔(𝑦) =

[𝛼𝑘(𝑒𝑦 − 1)] + and 𝐺𝑛(𝑙, 𝑢) =
2

𝑏−𝑎
∫ 𝑘(1 − 𝑒𝑦)cos (𝑛𝜋

𝑦−𝑎

𝑏−𝑎

𝑢

𝑙
)𝑑𝑦 ; having the values  l=a  , u=b  and setting k equal 

to 100, the amount for sale state would be the answer to the integral 𝑉𝑛.𝑗(𝑡𝑀) = 𝐺𝑛(𝑙, 𝑢) =
2

𝑏−𝑎
∫ 𝑘(1 −

𝑢

𝑙

𝑒𝑦)cos (𝑛𝜋
𝑦−𝑎

𝑏−𝑎
)𝑑𝑦 that would take a different value per every k. It has to be pointed out that α=-1 for sale 

state. 

Step Three: 

Matrix 𝜑(𝜉𝑗)is defined according to the relation 𝜑 (
𝑛𝜋

𝑏−𝑎
, 𝜉𝑗 , 𝜉𝑝) ≔ 𝜌ln(𝑣)(𝜉𝑗|𝜉𝑝). 𝜑(

𝑛𝜋

𝑏−𝑎
, 0, 𝑒𝜉𝑗 , 𝑒𝜉𝑝)   wherein   p=0,1, 

…, J-1  and j=0,1,…,J-1 . Next, 𝜌 𝑙𝑛(𝜈)in relation (9-3) and the term 𝜑(0) in the relation (14-3) would be 

obtained with various quantities for every test. In fact, the equations, 𝑞 =
2𝜆𝑣

𝜂2 − 1  and 𝜉 =
2𝜆

(1−𝑒−𝜆(𝑡−𝑠))
𝜂2  can 

be used when having 𝜈, 𝜆, 𝑞  to obtain the values of 𝜂 and 𝜉. 

Primary Loop:  

Step One: 

The premature exertion points of Bermudan transaction option can be obtained by solving the equation 

𝑐3 (𝑦, 𝜉𝑝, 𝑡𝑚) − 𝑔(𝑦) = 0 based on the Newton method. To do so, by obtaining the function’s derivative and 

having a point as the initial assumption and using the formula  𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥)

𝑓 ҆(𝑥)
, the equation roots that are 

the premature exertion spots can be attained in the form of  𝑦 = 𝑥∗(𝜉𝑝, 𝑡𝑀−1). 

Step Two: 
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The first line and column of the Ms and Mc matrixes allows the attainment of Henkel and Horseshoe 

Matrices. 

Step Three: 

Calculation of  𝛽�̂�(𝑡𝑚) = [�̂�(𝑡𝑚). �̃� (𝜉𝑗)] 𝑤 per every �̃�(𝜉𝑗). 𝑗 = 0,1, … , 𝐽 − 1 was conducted in the third step of the 

initial value assignment and  �̂�(𝑡𝑚) is obtained for the sale state from the relation (43-3). 

Step Four:  

The first member of  �̂�𝑗(𝑡𝑚)  that was obtained in the previous step is multiplied by ½ and  �̂�𝑗
′ (𝑡𝑚) is obtained. 

Step Five: 

The vectors 𝑒−𝑟∆𝑡𝑅𝑒 {(𝑀𝑠 + 𝑀𝑐)𝛽𝑗
҆̂ (𝑡𝑚−1)}  𝑎𝑛𝑑   �̂�(𝑡𝑚)are obtained using FFT algorithm. In this step, matrices 

Mc and Ms exist and �̂�𝑗
′ (𝑡𝑚−1) is obtained using the previous step. 

Step Six: 

Rewriting of   𝑉 ′(𝑡𝑚) 

The Last Step: 

Calculation of  �̂�(𝜒, 𝜉𝑗 , 𝑡0). Spline interpolation is used for  �̂�(𝜒, 𝜎0, 𝑡0). 

4. The Numerical Results for Bermudan Option: 

The most frequently used parameters for the American option under Heston dynamics through the 

test number four is offered in the following form: 

Test Number 4 (q=0.98): 

 

𝑆0 = {8,9,10,11,12}     𝐾 = 10     𝑇 = 0.25   𝑟 = 0.1     𝜆 = 5    𝜂 = 0.9    𝑣 = 0.0625       𝜌 = 0.1 

 

Where, q>0. It is expected that the pricing performance is very precise and effective. The results have 

been given in table (4) wherein the system processor or CPU time has been calculated and recorded 

for five different values of S0. On the other hand, 𝑇𝑂𝐿 = 10−7     𝑎𝑛𝑑   𝑁 = 𝐽 = 27  that has been obtained 

using Gauss Legendre rule and cosine calculations for q=0.098. The results of the Bermudan sale 

option per every negative 𝑞 ∈ [−1,0] and P have been given in table (5). They have not been computed 

before for negative ρ values. 

Test Number Five (q=-0.47): 

 

𝑆0 = {90,100,110}     𝐾 = 100    𝑇 = 0.25   𝑟 = 0.04     𝜆 = 1.15    𝜂 = 0.39    𝑣 = 0.0348      𝑣0 = 0.0348 

 

Where, 𝑇𝑂𝐿 = 10−7     𝑎𝑛𝑑   𝑁 = 𝐽 = 27 𝑎𝑛𝑑 𝑞 = −0.47. According to the values given in the two tables, 

the convergence of Bermudan Option to the exact value of American option mentioned in (Vellekoop 

and Nieuwenhuis, 2009) has been shown. 

Conclusion: 

The present study offered a strong and effective method for Bermudan pricing and discrete observations of the 

barrier option under the Heston stochastic volatility based on Fourier Series. The problem related to the 

quasi-unique behavior in the left side tail of Heston variance density was solved by changing a variable in the 

variance logarithm domain. A discrete pricing formula was obtained based on cosine series expansion in the 

logarithm dimension of the stock and a numerical integration rule in the variance logarithm aspect. The fast 

error convergence was shown in a discussion on the error analysis and determination of some of the 

parameters using the numerical integration methods for pricing method. Although some of the parameters 
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did not hold for Feller condition in premature option pricing, the offered method gave the option’s prices with 

high accuracy for a fraction of second. On the other hand, in the stage of setting the initial values of the 

algorithm, although most of the calculation time was consumed for Bessel Function calculation, error 

convergence was numerically observed. The method presented herein can be applied like a resilient rule for 

stochastic volatility methods like Heston model which has stochastic interest rates; of course, this works when 

the characteristic function or the joint probability distribution density function of the status variables are 

clear. 
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