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Abstract: Cochlear implants are being widely used for the patients with severe to profound sensori-neural 

hearing loss. Speech coding algorithms play an important role in improving the performance of cochlear 

implant. At recent years, the performance of CI has been improved for most users under the silent 

environment. However, as the background noise level increases, speech recognition scores are degraded 

considerably. In this paper, the Empirical Mode Decomposition and a selected modes approaches are applied 

as a speech enhancement method for cochlear implants. This algorithm is developed to extract features, called 

intrinsic mode functions, by a sifting process. Then, IMFs are selected based on CMSE criteria to decrease the 

noise effect. Also, the Choi-Williams time-frequency technique is applied to extract different components of 

the resulting signal. Finally, performance of this algorithm in terms of correlation analysis was compared to 

continuous interleaved sampling (CIS), frequency amplitude modulation encoding (FAME) and Hilbert Huang 

Transform Stimulating (HHTS) strategies. The results showed the highest correlation coefficient between 

spectrum of synthesized signal and original speech with proposed method. 
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INTRODUCTION 

 

Cochlear implant (CI) is an electronic prosthetic device surgically implanted into the inner ear for 

restoring some degree of hearing of profoundly deaf patients with sensory-neural origin[1]. It includes 

internal and external components. The external part consists of a microphone that picks up sound, a signal 

processor that converts sound into electric impulses, and a transmitter that is magnetically attached to the 

internal device to which it transmits the electric impulses via radio waves. The impulses are sent to an array 

of electrodes, which are surgically inserted into the cochlea. The electrodes stimulate the auditory nerves, 

providing auditory information to the brain[2].Most CI users achieve 80% word recognition scores in quiet 

listening conditions[3]. However, speech recognition scores are degraded in noisy conditions[4]. Several 

studies have been proposed to develop speech processing techniques for CI. In CIS strategy, envelope 

characteristics of speech signal is extracted [5].It utilizes a filter-bank for the frequency decomposition of 

incoming speech which is a simplification of frequency decomposition function of biological cochlea. Outputs 

from each channel of the filter-bank are used to modulate the amplitudes of electrical stimulation pulses. In 

FAME strategy, envelope, frequency and phase information are extracted. This algorithm provides too much 

indiscriminate information. These techniques are not successful in providing time and frequency resolutions 

at the same time. Wavelet Transform (WT) overcome the limitations of the previous methods by providing 

both time and frequency resolutions [6]. However, it suffers to analyze non-stationary signals like speech and 

depends on the basis wavelet. In the last decade, a new nonlinear technique, termed empirical mode 
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decomposition (EMD), has been introduced by N. E. Huang et al. [7]for adaptively representing non stationary 

signals.  The most  important  characteristic of EMD  is  that  the basis functions are  directly  derived  from  

the  speech signal itself. HHTS strategy[8] is used to encode both temporal envelope and instantaneous 

frequency (IF) of input speech signal for CI. While this strategy has allowed cochlear implant users to achieve 

good speech recognition in quiet, their performance in noise is severely compromised. Also, an IF has a true 

meaning only for mono component signals, where there is only one frequency or at least a narrow range of 

frequencies varying as a function of time. Speech signals do not show these necessary characteristics. In  this  

paper, in the first time, we  propose a  new  speech  enhancement  approach  based  on  the EMD technique 

and a CMSE criteria applied to select modes. The basic idea is to reconstruct the signal with IMFs by 

selecting only IMFs that satisfy CMSE criteria. In the second time, the Choi-Williams time-frequency 

technique is applied to extract different components of the resulting signal. The proposed algorithm can 

effectively reduce noise in comparison with HHTS strategy. This paper is outlined as follows. Section 2 

describes theoretical overview of EMD (Section 2.1), noise reduction with EMD and CMSE algorithm (Section 

2.2), CHOI-WILLIAMS Time-Frequency Technique (Section 2.3) and stimulation of new denoising EMD 

Stimulating Algorithm for CIs (Section 2.4) are described. Section 3 covers the results. Section 4 devotes to 

the conclusion. 

 

1. Material and Methods 

 

2.1. Theoretical overview of EMD 

The Empirical Mode Decomposition (EMD) has been proposed as an adaptive time-frequency data 

analysis method[7]. This adaptive technique is derived from the simple assumption that any signal consists of 

different intrinsic mode functions (IMF) each of them representing an embedded distinctive oscillation on a 

separated time-scale. An IMF is defined by two criteria: i) the number of extrema and of zero crossings must 

either equal or differ at most by one, and, ii) at any instant in time, the mean value of the envelope defined by 

the local maxima and the envelope of the local minima is zero. The following plan offers an idea about the 

principle algorithm of the EMD: 

1. Initialize𝑟0(𝑡) = 𝑥(𝑡); 𝑗 = 1 

2. Extract the 𝑗_𝑡ℎ IMF: 

(a) Initializeℎ0(𝑡) = 𝑟𝑗(𝑡); 𝑘 = 1 

(b) Locate local maxima and minima of ℎ𝑘−1(𝑡) 

(c) Cubic spline interpolation to define upper and lower envelope of ℎ𝑘−1(𝑡) 

(d) Calculate mean𝑚𝑘−1(𝑡) from upper and lower envelope of ℎ𝑘−1(𝑡) 

(e) Defineℎ𝑘(𝑡) = ℎ𝑘−1(𝑡) − 𝑚𝑘−1(𝑡) 

(f) If stopping criteria are satisfied then ℎ𝑗(𝑡) = ℎ𝑘(𝑡) else goto 2. (b) with 𝑘 = 𝑘 + 1 

3. Define𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − ℎ𝑗(𝑡) 

4. If 𝑟𝑗(𝑡) still has at least two extrema then goto 2. (a) with 𝑗 = 𝑗 + 1 else theEMD is finished 

5. 𝑟𝑗(𝑡)is the residue of 𝑥(𝑡) 

At the end of this numerical sifting process the signal 𝑥(𝑡) can be expressed: 

𝑥(𝑡) = ∑ ℎ𝑗(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑗=1

 

Whereℎ𝑗(𝑡) indicates the 𝑗_𝑡ℎ IMF, 𝑛 as the number of sifted IMF and 𝑟𝑛(𝑡)denotes a residue which can 

be understood as the trend of the signal. 

 

1.2. Noise reduction with EMD and CMSE algorithm 

Consider a noise-contaminated speech model described by (1):  

𝑥[𝑛] = 𝑠[𝑛] + 𝑡[𝑛] (1) 

Where𝑥[𝑛]is the noisy speech signal, 𝑠[𝑛]is the original noise-free speech, and 𝑡[𝑛]is the noise source. 

With calculating IMF of noisy speech signal and comparison them together, it is revealed that when noise is 

added to the clean speech, the first few IMFs contain most of the noise energy as well as some of the speech. 

However, it can also be seen that the EMD decomposition drives a substantial amount of the speech energy to 

latter IMFs along with some residual noise. The mode selection method is based on this assumption that the 
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first IMFs (high-frequency modes) are mostly dominated by noise and are not representative for information 

specific to the original signal. Thus, the enhanced signal  is  reconstructed  only  by  a  few  IMFs  in which  

pure  signal mostly  predominates. In fact, there will be a mode,𝐼𝑀𝐹𝑘𝑠(𝑡) from which the energy distribution of 

the original signal is greater than the noise. The simple of this approach is to set to zero the first 𝐾𝑠 − 1IMFs 

[9]. 

 

Another method is to find an approximation of the original signal 𝑥(𝑡)that minimizes the mean square 

error (MSE) defined by[10]: 

𝑀𝑆𝐸(𝑥, 𝑥̃) ≜
1

𝑁
∑ [𝑋(𝑡𝑖) − 𝑥̃(𝑡𝑖)]2𝑁

𝑖=1         (2) 

Where = [𝑥(𝑡1), 𝑥(𝑡2), … 𝑥(𝑡𝑁)]𝑡 ,𝑥̃ = [𝑥̃(𝑡1), 𝑥̃(𝑡2), … 𝑥̃(𝑡𝑁)]𝑡 and 𝑁 is the signal length. After decomposing 

the signal 𝑥(𝑡)through the EMD algorithm, 𝑥̃(𝑡)is reconstructed as follows: 

𝑥̃𝑘𝑠(𝑡) = ∑ 𝑖𝑚𝑓𝑘(𝑡) + 𝑟𝑛

𝑛

𝑘=𝑘𝑠

(𝑡),     𝑘𝑠 ∈ {2,3, … , 𝑛}     (3) 

 

Since, the original signal  𝑥(𝑡)  is unknown; the MSE cannot obviously be calculated. Thus a distortion 

measure, termed consecutive MSE (CMSE) [9]is used.  The CMSE is defined as: 

 

𝐶𝑀𝑆𝐸(𝑋̃𝐾 , 𝑋̃𝐾+1) ≜
1

𝑁
∑[𝑋̃𝐾(𝑡𝑖) − 𝑋̃𝐾+1(𝑡𝑖)]2 =

1

𝑁
∑[𝑖𝑚𝑓𝑘(𝑡𝑖)]2    𝑘 ∈ {1,2, . . , 𝑛}(4)

𝑁

𝑖=1

𝑁

𝑖=1

 

By using  the CMSE  criterion,  the  IMF order  corresponding  to  the  first  significant  change  in  

the energy distribution is identified.   

 

1.3. CHOI-WILLIAMS Time-Frequency Technique   

Time-frequency representations have found extensive application in problems requiring time-varying 

spectral analysis [11]. The most significant class of time-frequency representations is known as the Cohen’s 

Class [12]. Between the different time-frequency methods belonging to this class, the Choi–Williams 

distribution was chosen for its remarkable properties.  The Choi–Williams distribution 𝐶𝑊𝐷(𝑡, 𝑓) was a 

significant step in the field of time-frequency analysis where it opened the way for enhancing resolution with 

cross-terms reduction [13]: 

𝐶𝑊𝐷𝑆 = 2 ∬
√𝜎

4|𝜏|√𝜋
𝑒

−𝜎𝑥2

(16𝜏2)𝑠(𝑡 + 𝑥 +
𝜏

2
)𝑠∗(𝑡 + 𝑥 −

𝜏

2
)

∞

−∞

𝑑𝑥𝑑𝜏       (5) 

 

Where 𝜎is a real parameter that can control the resolution and the cross-terms reduction. This can 

show excellent performance in reducing cross-terms while keeping high resolution, with a compromise 

between these two requirements decided by the parameter. 

 

 

1.4. Denoising EMD Stimulating Algorithm 

Figure 1 is a block diagram representing acoustic synthesis of proposed algorithm. One of the first 

processing steps in cochlear implants is to apply pre-emphasis to the signal. The pre-emphasis filter 

attenuates low frequencies and amplifies high frequencies, to compensate for the typical 6 dB/octave spectral 

roll-off of speech signals. It makes the low-energy, high-frequency consonants to stand out better against the 

high-energy, low-frequency vowels.  
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Figure 1- Block diagram of denoising EMD algorithm 

 

 

Then the signal is processed through empirical mode composition, in each band, using the CMSE 

criterion, the IMF selection is done. The outputs of 𝑛 channels are passed through two independent parallel 

paths to extract the amplitude envelope and frequency information in each band. The envelopes of the derived 

IMFs are then extracted by mode computation and low-pass filtering (LP).The cutoff frequency of LP is 

typically400 Hz. Finally, envelope matching is needed to map the decomposed signal to the dynamic range of 

the human ear. For this purpose, a nonlinear logarithmic function (NLM, as shown in figure 1) is used [14]. At 

the same time, in another path the frequency is derived from output speech signal of 𝐶𝑊𝐷(𝑡, 𝑓) in each band. 

After low pass filtering (LP), the frequency depth of processed signal in each band is limited at about 500Hz. 

At last, synthesized speech signal could obtained by summarizing each sub-band’s stimuli. 

 

 

2. Results 

 

The cross-correlation between spectrums of synthesized and original signals was calculated, showing 

the power of this method and its capability in representation of a high percentage of the original signal for the 

implant user. Correlation coefficients were obtained in different environmental conditions (quiet, 5dB, 10dB, 

15dB). In this computer simulation, Noisy92 sentences as database were processed by CIS, FAME, HHTS and 

proposed algorithm. Table 1 shows correlation coefficient between spectrum of reconstructed signal and 

original one which is deteriorating for each speech coding algorithm with noise increasing. This indicated that 

regardless of the type of algorithm, the efficiency of encoding can be reduced by increasing of noise. The 

performance of proposed algorithm is better than other three algorithms in four different environmental 

conditions.  

 

Table1-Mean values of absolute correlation coefficients 𝒓̅ 

 

Listening 

condition 

CIS FAME HHT Proposed 

algorithm 

Quiet 0.0892 0.3174 0.4347 0.5320 

5 dB 0.0041 0.3060 0.4122 0.4621 

10 dB 0.0038 0.2974 0.4009 0.4103 

15 dB 0.0036 0.2795 0.3793 0.4021 
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4. Conclusion 

In this paper, we presented a denoising EMD-based technique to decompose the input signal into 

different frequency bands and a selected modes approaches are applied as a speech enhancement method for 

cochlear implants. This algorithm is developed to extract features, called intrinsic mode functions, by a sifting 

process. Then, IMFs are selected based on CMSE criteria to decrease the noise effect. Also, the Choi-Williams 

time-frequency technique is applied to extract different components of the resulting signal. Reconstruction of 

the decomposed signal showed that our technique can produce the processing with higher correlation than 

other methods. 
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