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Abstract: There is a one-dimensional model in which particles undergo many different reactions 
such as diffusion, coagulation and decoagulation. One boundary of chain is open to particles’ 
entry and exit. The aim is inspecting different phases in parameters space of model, probing 
phase transition point, and calculating quantities like density distribution function in each 
phase, particles’ flow and particles’ correlation functions in each site of lattice. To solve these 
kind of problems, different approaches such as mean field approximation, bethe's Ansatz, vacant 
sites formalism and computer simulation have extended but here matrix product Ansatz way was 
used to solve the model. Results have revealed high density and low density phases for model for 
particles' density of course with a constraint on parameters. A traveling shock is seen that moves 
in the body of lattice before attaching to steady state, too. 
 
Keywords: phase transition, reaction diffusion, bethe Ansatz, matrix product Ansatz, many 
particles systems, non-equilibrium models   

INTRODUCTION 

Stochastic Systems are evolutioned and transformed from one configuration to the other but 
finally reach to steady state. Phase transitions between different phases are often seen in 
stochastic reaction diffusion systems. These have abrupt and too changes called first order phase 
transitions while physical quantities in higher order phase transitions have smooth changes. 
Phase transitions discussion is the most important aim in this research. 
 
 Literature review 
Much of many particles systems in the nature belong to non-equilibrium and one-dimensional 
reaction diffusion systems which have been solved using modelling (Jafarpour et al., 2009; 
Mondal & Mallik, K, 2008; Mallick.k et al., 1999; Crampe et al., 2016). For example, to solve auto 
cellular models of traffic flow of vehicles in streets and moving peoples, stochastic systems have 
been used (Evans et al., 1998; Li et al., 2015; Perkins et al., 2014; Zeraati et al., 2013). The 
simple diffusion models are appropriate to discuss synetic of biopolymerization (Sharma & 
Chowdhury, 2011; Tobias, 2016; Sanchez et al., 2016). 
These stochastic many particles models can be used to explain the distribution of votes among 
candidates. How do views of candidates influence other people’s views (Dietrich, 2001; Dietrich & 
de Oliveira, 2002). Foraging behavior of group animals that live in fixed colonies like ants, bees 
and so on as an important problem in ecology have studied using non-equilibrium models 
(Lixiang et al., 2014; Couzin, 2005; Liang et al., 2012, Chen  et al., 2011). Fluctuations of heat 
flux in the stochastic systems using stochastic modelling have been discussed (Brunet et al., 
2010). These non-equilibrium and one-dimensional models show interesting collective behaviors 
such as phase transition while are not seen in equilibrium systems, thus are observed by 
researchers in physics and the other fields (Sasamoto et al., 2000; Schutz, 2001).  
 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharma%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=21888920
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharma%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=21888920
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chowdhury%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21888920
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sanchez%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=26669894
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22162724
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Problem 
Suppose a one-dimensional lattice (chain) in which classical particles can diffuse in its bulk 
toward left and right, also if two particles encounter to each other, they will be converted to a 
single particle (coagulation). Furthermore, a single particle can be split to two particles 
(decoagulation). If site 1 (the left site) is empty (∅ ), particles can enter it by rate α . Also If it is 
full (A), can become vacant by rate β. Therefore, we have in the left boundary: 

∅ → A  , by rate α   و  A → ∅    by rate β   , (1)        
Time evolution operator (Hamiltonian operator) is defined in form of Bra and Ket: 

d
dt

| P(t)⟩ = H|P(t) >     , (2) 
In which |P(t) > vector is in system configurations space and H is a stochastic matrixe with   2L ×
 2L dimensions and is similar to hamiltonian in the schrodinger's wave function that gives us 
correspondent eigenvectors to eigenvalues. H elements are transition rates between different 
system configurations. Due to conservation of probability, sum of elements which are on each 
column of H matrix should be zero. H matrix has below form: 

H = H(l)  + �� hj ,j+1
L−1

j=l
� + H(L) 

H(1) =  h(1)  ⊗ I ⊗(L−1)       ,       H(L) =  I ⊗(L−1) ⊗ h (L) 
hj ,j+1 =   I ⊗(j−1) ⊗ h ⊗ I ⊗(L−j−1)  , (3) 

In which h(1) and  h (L) are 2 × 2  matrices and states site 1 and site tail (L) respectively, I is 2 ×
2 identity matrix and h is a 4 × 4 matrix that showes mutual and dual site interactions in the 
chain bulk. In long time finally system reach to steady state and    d

dt
| P(t)⟩ = 0  . 

Using this equation  , H|P(t)⟩ =  0     ,    (4) 
Therefore, the vector correspondent to eigenvalue zero give us system's steady state. Using (3) 
time evolution operator can be written as below: 

H(l) =  h(1)  ⊗ I ⊗(L−1)   , H =  �� hj ,j+1
L−1

j=l
� + H(l) 

hj ,j+1 =   I ⊗(j−1) ⊗ h ⊗ I ⊗(L−j−1)   ,     (5) 
Now H(1) can be deleted because right boundary of the system is closed. Now h and h(1) operators 
in the basis of (ϕϕ,ϕA, Aϕ, AA) have forms of : 

 

h =

⎣
⎢
⎢
⎡

0                     0                     0                      0
0         q(1 + ∆)           − q− 1              − q− 1 
0             − q            q− 1(1 + ∆)          − q  
0            − ∆q           − ∆q− 1          q + q− 1 ⎦

⎥
⎥
⎤
  , (6) 

 

 h(1) =  � α − β
− α β �         , (7)  

Exact Solve 
Infact, Matrix product Ansatz way is eigenvector equation for zero energy state. To solve (4) 
steady state weights are: 

fL (s1 , … , Sl) = < W|�(SiD + (1 −  Si)E)|V >
L

i=1

 , (8) 

Therefore, weights are given from product L square matrices by D and E and two Linear < W| 
and column |V > vector. If arbitrary site i occupied by one particle, Si is equal 1 and related 
matrix for this position is D. If arbitrary site i is vacant, Si is equal zero and related matrix for 
this position is E. It can be proved that matrices and vectors which fulfill algebra below then (4) 
is fulfilled and steady state is obtained: 

⎩
⎪
⎨

⎪
⎧

 
h ��E

D� ⊗ �E
D�� =  �E�

D�
� ⊗ �E

D� − �E
D� ⊗ �E�

D�
�

< W| h(1) �E
D� =  −< W| �E�

D�
�  

 h(L) �E
D� |V > =  �E�

D�
� |V >   ,             (9)
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Here E�  and D� in (9) are auxiliary matrices. 

Useful quantities 
The particles' density function in arbitrary site i in steady state is: 

< S𝑖𝑖 >𝐿𝐿=  
∑ …Sl=0 ,1  ∑ SifL(S1 …….S𝐿𝐿)SL=0 ,1

𝑧𝑧𝐿𝐿
  , (10) 

 And binomial correlation functions < S𝑖𝑖S𝑗𝑗 >𝐿𝐿 states the probably of synchronous presence of 
particles in sites i and j in steady state is defined in form of: 

< S𝑖𝑖S𝑗𝑗 >𝐿𝐿=  
∑ …Sl=0 ,1  ∑ SiSjfL(S1 … … . S𝐿𝐿)SL=0 ,1

𝑧𝑧𝐿𝐿
      , (12) 

Particles’ Current in the steady state in arbitrary site i is useful for our discussion. It is defined 
as: 
 

𝐽𝐽 =< S𝑖𝑖(1 −  S𝑖𝑖+1) >     , (13) 

In these equations,  𝑧𝑧𝐿𝐿 is a normalization factor and is similar to partition function in statistical 
mechanic. It can be given by adding all of the system configurations. Then: 

 𝑧𝑧𝐿𝐿 =  � …
Sl=0 ,1 

 � fL(S1 … … . S𝐿𝐿)
SL=0 ,1

       , (14) 

Now new operator C = D + E is defined and our quantities are rewritten to follow matrix forms: 

< S𝑖𝑖 >𝐿𝐿=  <W| 𝐶𝐶𝑖𝑖−1 D  𝐶𝐶𝐿𝐿−1  |  V>    
<W| 𝐶𝐶𝐿𝐿  |  V>

     , (15) 

< S𝑖𝑖S𝑗𝑗 >𝐿𝐿=  
< W| 𝐶𝐶𝑖𝑖−1 D 𝐶𝐶𝑖𝑖−𝑗𝑗−1   𝐷𝐷𝐶𝐶𝐿𝐿−𝑗𝑗   | V >

< W| 𝐶𝐶𝐿𝐿  | V >
  , (16) 

𝐽𝐽 = <W| 𝐶𝐶𝑖𝑖−1 D E  𝐶𝐶𝐿𝐿− 𝑖𝑖− 1  |  V>    
<W| 𝐶𝐶𝐿𝐿  |  V>

    , (17) 

Finally, m-point correlation function using vectors and matrices have new form (18): 

< S𝑘𝑘1 , … , S𝑘𝑘𝑚𝑚 >𝐿𝐿 

=  
< W|𝐶𝐶𝑘𝑘1−1 D 𝐶𝐶𝑘𝑘2− 𝑘𝑘1 −1  𝐷𝐷…𝐶𝐶𝐿𝐿−𝑘𝑘𝑚𝑚|V >

< W| 𝐶𝐶𝐿𝐿  | V >
  , (18) 

Now using relations (9), (5), (6) and (7) the algebra of model is obtained: 

[𝐶𝐶 ,𝐶𝐶̅ ] = 0    ,   [𝐸𝐸 ,𝐸𝐸� ] = 0 

𝐸𝐸�𝐶𝐶 − 𝐸𝐸𝐶𝐶̅ = (𝑞𝑞 + 𝑞𝑞∆ + 𝑞𝑞−1)𝐸𝐸𝐶𝐶 − 𝑞𝑞(1 + ∆)𝐸𝐸2 − 𝑞𝑞− 1 𝐶𝐶2 

𝐶𝐶̅𝐸𝐸 − 𝐶𝐶𝐸𝐸� = (𝑞𝑞−1 + 𝑞𝑞−1∆ + 𝑞𝑞)𝐶𝐶𝐸𝐸 − 𝑞𝑞−1(1 + ∆)𝐸𝐸2 − 𝑞𝑞𝐶𝐶2 

< W|�(𝛼𝛼 + 𝛽𝛽)𝐸𝐸 + 𝐸𝐸� − 𝛽𝛽𝐶𝐶� = 0 
, < W|𝐶𝐶̅ = 0  , E�|V > = 0  ,𝐶𝐶̅|V > = 0    , (19) 

and 𝐶𝐶 = 𝐷𝐷 + 𝐸𝐸 and 𝐶𝐶̅ = 𝐷𝐷� + 𝐸𝐸�. The last work is finding representations for (19) algebra. 

Algebraic representation 
One of the limited dimension representations comes in follow form, but in case  𝑞𝑞2 ≠ 1 + ∆  : 

𝑐𝑐 = �1 + ∆ 0
0 𝑞𝑞2�       ,     𝑐𝑐̅ = 0  , 
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𝐸𝐸 = �1 𝜆𝜆
0 𝑞𝑞2�      ,    𝐸𝐸� =  �

𝑞𝑞2 −  1
𝑞𝑞

∆ −
Δ
𝑞𝑞
𝜆𝜆

0 0
� 

|V > = �
𝜆𝜆

 𝑞𝑞2 −  1
1

�            , 

< W| = �
𝑞𝑞Δ(𝑞𝑞2 − 𝑞𝑞𝛽𝛽 − 1)
𝜆𝜆(𝛽𝛽Δ − 𝛽𝛽 − 𝑞𝑞Δ)   ,     1�  , (20) 

In the upper relations,  𝜆𝜆 is a free parameter with constraint: 

𝛼𝛼 = (𝑞𝑞− 1 − 𝑞𝑞 +  𝛽𝛽)Δ     , (21) 

For other values, we do not have any representation. A possible representation form for case 𝑞𝑞2 =
1 + ∆  is: 

𝑐𝑐 = �1 𝜆𝜆
0 1�       ,     𝑐𝑐̅ = 0  , 

𝐸𝐸 = �
1
𝑞𝑞2

𝜆𝜆

0 1
�     ,   𝐸𝐸� =  �

(𝑞𝑞2 −  1)2

𝑞𝑞3
−
𝑞𝑞2 −  1
𝑞𝑞

𝜆𝜆

0 0
� 

|V > = �
𝑞𝑞2 𝜆𝜆

 𝑞𝑞2 −  1
1

�            , 

< W| = �− 
𝑞𝑞3 − 𝛽𝛽𝑞𝑞2 − 2𝑞𝑞 + 𝑞𝑞− 1 + 𝛽𝛽
𝜆𝜆(𝑞𝑞3 − 𝛽𝛽𝑞𝑞2 − 𝑞𝑞 + 𝛽𝛽) 1�  , (22) 

Results and Conclusions 
Using equation (15) and representation (20), particles’ density in arbitrary site i in steady state is 
prepared: 

< S𝑖𝑖 >𝐿𝐿=  Δ(1+Δ)− 1�1−𝑞𝑞2+qβ��Δ(1+Δ)𝐿𝐿q2 𝑖𝑖−�𝑞𝑞2−1�(1+Δ)𝑖𝑖𝑞𝑞2 𝐿𝐿)q− 2𝑖𝑖+ 1�    
qΔ(𝑞𝑞2−1)�𝑞𝑞 2 𝐿𝐿−(1+Δ)𝐿𝐿�+β(Δ𝑞𝑞2 (1+Δ)𝐿𝐿−𝑞𝑞 2 𝐿𝐿 (𝑞𝑞2−1)(1+Δ))

     , (23) 

It is found that in thermodynamic limit  → ∞ , the system has two different phases for density. In 
low density phase (𝑞𝑞2 > 1 + ∆) : 

< S𝑖𝑖 >𝐿𝐿=  q 2 α    
(1+∆)(𝛽𝛽(1+∆)−𝑞𝑞 ∆)

( 𝑞𝑞2

1+∆
)− 𝑖𝑖     , (24) 

In this phase density of particles in the bulk chain and right side is constant and is equal to zero 
approximately but at the left side, it is high and gradually is vanished by characteristic length  ξ 
. 

ξ− 1 =  �ln
𝑞𝑞2

1 +  Δ
�             ,   (25) 

In the high density phase (𝑞𝑞2 < 1 + ∆) , < S𝑖𝑖 >𝐿𝐿 is given by : 

< S𝑖𝑖 >𝐿𝐿=  Δ
1+∆

− 𝑞𝑞2−1
1+ Δ

( 𝑞𝑞2

1+∆
)𝐿𝐿 − 𝑖𝑖       ,    (26) 

Here density of particles in the bulk chain and left side is constant and approximately is equal to  
Δ
1+∆

 but in the right side, goes toward zero. Using (15) and (22), density in thermodynamic limit  
→ ∞ , for case 𝑞𝑞2 = 1 + ∆  is obtained in form: 

< S(𝑥𝑥 ) >=  Δ
1+∆

(1 − 𝑥𝑥) ,  (26)  while  𝑥𝑥 = 𝑖𝑖
𝐿𝐿
   , 0 < x < 1  .  
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Using (16), binomial correlation functions < S𝑖𝑖S𝑗𝑗 >𝐿𝐿  and matrix forms and vectors are obtained: 

< S𝑖𝑖S𝑗𝑗 >𝐿𝐿= 

 
𝑞𝑞 Δ2(𝑞𝑞2 − 𝑞𝑞𝛽𝛽 − 1)
Z𝐿𝐿(β + βΔ − Δq)

�
Δ(1 + Δ)𝐿𝐿−2

𝑞𝑞2 − 1
− 𝑞𝑞2(𝐿𝐿−𝑗𝑗) (1 + Δ𝑗𝑗−2) �   , (27) 

That  

Z𝐿𝐿 = 𝑞𝑞2 𝐿𝐿 +  
Δ𝑞𝑞(𝑞𝑞2 − 𝑞𝑞𝛽𝛽 − 1)(1 +  Δ)𝐿𝐿

(𝑞𝑞2 − 1)(𝛽𝛽 + 𝛽𝛽Δ − 𝑞𝑞Δ)
    , (28) 

We can discuss model phase transitions using draw of plot of function zeroes in the imaginary q 
sheet. The low density and high density phases and phase transition for a 100 site chain in below 
figures are seen respectively:  

 
 

 
 
 

 
 

This problem can be solved and discussed using mean field approximation too. Giving different 
values to 𝛼𝛼 ,𝛽𝛽 and ∆ in a computer program code which has written for mean field approximation, 
a linear function of 𝑞𝑞2   versus ∆ is obtained: 𝑞𝑞2 = 1.093 + 11.552 ∆ while in exact matrix solution, 
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transition point has 𝑞𝑞2 = 1 + ∆ form. This difference is because of the mean field approximation 
ignores correlations between particles. 
 

 
 
But giving different values to models parameters which contemporary confirm two constraints 
𝛼𝛼 = (𝑞𝑞− 1 − 𝑞𝑞 +  𝛽𝛽)Δ  , (21) and 𝑞𝑞2 = 1.093 + 11.552 ∆  a shock form function is obtained instead of 
a linear function for density distribution. It is seen in the figure that shock moves toward the left 
side of chain before the system attached to steady state but in steady states, it would be localized 
in a point. 
 

 
 

This studied model here, can be used for different cases of stochastic systems. For example, a 
path in which observers with their cars go toward ceremony place or sport race that its one end is 
closed, a path contains many vehicles that is ended to a checkpoint, a long array of people to take 
food or water and … or to confirm their identification to permit entering a specific place, a 
current of flux into a vessel with a one closed end, a sound vessel or tube with a one closed end 
and so on. The results show that these models have two different phases and a shock profile.      
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