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Abstract: One of the problems that threatens the earth planet is the problem of water shortage and 
circumstance of it's allocation. In the recent decades, according to increasing demand for drinking water, 
industry and agriculture as well as the reduction of groundwater resources, this problem has been intensified. 
This paper presents a new and fundamental method for the allocation of water in areas faced water shortages 
using stochastsic dynamic programming. In this study, demands, the amount of precipitation and input water 
to dam are considered probabilistic. We developed a dynamic programming based model with objective to 
determine the quantities that have to be allocated at each period in order to minimize the total cost. Finally, a 
numerical example is worked out to illustrate how the model is applied. 
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INTRODUCTION 

Literature review 
The increasing demand for water consumption and decreasing groundwater have caused a crisis in water 
supply. In the recent years, different studies have been done for water resources allocation around the world. 
The researches consist of two main approaches. Firstly, the dynamic programming based methods are 
common classical approaches. In this kind of problems, the researchers have simplified the model by using 
mathematical methods and probability rules. Cervellera et al. (2006) presented a method for decreasing the 
dimensions of water allocation problem and removing some of the states; In this study, state variables have 
been considered continuous, Objective functions and constraints have been considered nonlinear and finally 
the solutions have been approximated. Heidari and Jamshidi (1977) designed a metaheuristic method to 
control and optimize allocation of Khuzestan water resources called discrete differential dynamic 
programming (DDDP).The technique makes use of an initial nominal state trajectory for each state variable 
and forms corridors around the trajectories. Ben Alaya et al. (2003) have proposed an optimum solution to 
manage and improve water resources for arid condition in India. The water storage is used for irrigation. The 
determination of an optimal rule is based on two opposite objectives: the satisfaction of irrigation water 
demand and the safeguard of a minimal storage in dam. By considering different weights for these objectives, 
the stochastic dynamic programming has led to different optimal rules for the water resources management of 
the Nebhana dam. Piantadosi et al. (2008) presented a new method to determine a way for management of 
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urban storm-water by using stochastic dynamic programming. They minimized conditional value-at-risk 
(CVaR) by using this method. They considered random inflow and constant demand. Luo et al. (2007) 
proposed a water resources system planning by using interval stochastic dynamic programming. They used 
the uncertainty and dynamic properties for obtaining reasonable solutions. They also analyzed the results and 
solutions for determining the main factors that affect the system's performance. Secondly, they have searched 
optimum solutions by fuzzy logic or multi objective concepts in some cases. In a study, Hall and East (1994) 
used genetic algorithm and dynamic programming for solving a multi reservoirs problem with objective to 
maximize profit of power generation and supply irrigation water. They reported predominance of GA to 
dynamic programming. Reddy and Kumar (2007) used GA,PSO and EMPSO for extracting utilization policies 
in multipurpose reservoirs that their objective was maximizing power generation and minimizing irrigation 
water shortage. Borhani Darian and Moradian (2010) decided to optimize utilization of multi-reservoirs 
systems. In this study, the utilization of multi-reservoirs has been accomplished by GA and ACO. The results 
indicated that as decision variables increase, ACO faces decreasing of optimality as well as increasing of 
calculation time. Zarghami and Hajikazemian (2013) have proposed a new optimization method based particle 
swarm optimization (PSOMS) that it's application was for water resources management in Tabriz (Iran). The 
objective functions were minimizing the cost, maximizing the water supply and minimizing the environmental 
hazards. Also the constraints were physical limits such as pipeline capacity, ground water, the demand and 
the impact of conservation tools. According to uncertainty of parameters, they are modeled by fuzzy logic and 
the problem is solved by proposal algorithm. Finally, the diversity of solutions is checked on the basis of an 
indicator of the distances between different solutions which show the efficiency of the PSOMS algorithm is 
preferred to the genetic algorithm. Chao-Chung Yang et al. (2009) integrated multi-objective genetic 
algorithm (MOGA) and constrained differential dynamic programming (CDDP) for supplying of surface and 
subsurface water. They simulated a supply system according to fixed costs, time dependent costs and financial 
constraints.                                                                                                                                                     
Research area situation 
Zayande Rood is the biggest river of Iran plateau that originates from Zagros mountains and terminates to 
Gavkhuni swamp. The area of this river is about 41500 𝑘𝑘𝑘𝑘2 and it's length about 350 km. Zayande Rood dam  
has been constructed on this river that it's content is about 1460000000 𝑘𝑘3. Isfahan is the biggest consumer 
of Zayande Rood dam water in Iran. The water of Zayande Rood is allocated to 3 parts: agriculture, drinking 
water and industry. Regional water authority have encountered an critical problem for allocation water 
according to increasing of demand, decreasing of rainfall and transferring of some water to adjacent state 
(Yazd) in recent years.                                                                         

Model Formulation 

In this section we have formulated a model to describe the problem and to optimize it using stochastic 
dynamic programming. Before presenting the model, mathematical formulation and it's algorithm, the 
characteristics of dynamic programming should be presented.                                                               
Identifying states and stages in the model 
The characteristics that a problem should possess to be able to be formulated as a dynamic programming 
problem are given as: 
The problem can be divided into stages, with a policy decision required at each stage. In our model the 
different time periods in a finite time horizon are the stages. According to increasing water demand and water 
shortage during June to August, the first week of June till the last week of August are considered as stages of 
programming and at the beginning of these time periods we have to make a policy decision i.e. the quantity to 
be allocated to each area at that time period or stage. Each stage has a number of states associated with the 
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beginning of that stage. In our model the states are the quantities of dam inventory at each stage. So the state 
variable is defined by the dam inventory in the beginning of each stage:                                                                                                                

𝑆𝑆𝑘𝑘 = 𝑛𝑛𝑘𝑘 

Where 𝑛𝑛𝑘𝑘 is the quantity of dam inventory in the beginning at kth stage 
The effect of the policy decision at each stage is depicted in the transformation of the current state to a state 
associated with the beginning of the next stage. In our model the policy decision (total of quantities to be 
allocated) at each stage will determine the state (size of inventory) of the next stage. The solution procedure is 
designed to find the optimal policy for the overall problem i.e. a prescription of optimal policy decision at each 
stage for each of the possible states. In our model we have to find the number of units to be allocated to each 
area  at each stage to find overall optimal policy. 
Given the current state, an optimal policy for remaining stages is independent of policy decisions adopted in 
previous stages. Therefore, the optimal immediate decision depends on only the current state and not on how 
you got there. This is the principle of optimality for dynamic programming. A recursive relationship that 
identifies the optimal policy for stage n given the optimal policy for stage n+1 is available. When we use this 
recursive relationship the solution procedure starts at the end and moves backward stage by stage each time 
finding the optimal policy for that stage until it finds the optimal policy starting at the initial stage. This 
optimal policy immediately yields an optimal solution for the entire problem.                                                                                                                   
Mathematical method 
The model used here is integer linear programming (ILP). Before stating this model, we first introduce the 
following notation:                                                  
                                                
N: Total periods of allocation planning 
k:  Stage index 
𝑛𝑛𝑘𝑘: Dam inventory in the beginning of kth stage 
𝐶𝐶ℎ: Holding cost per unit of an inventory dam 
𝐶𝐶𝑎𝑎: Conduction cost per unit of inventory dam for agriculture 
𝐶𝐶𝑐𝑐: Conduction cost per unit of inventory dam for drinking water 
𝐶𝐶𝑖𝑖:  Conduction cost per unit of inventory dam for industry 
𝐶𝐶𝑏𝑏𝑎𝑎: Shortage cost for per unit of inventory dam for agriculture 
𝐶𝐶𝑏𝑏𝑐𝑐:  Shortage cost for per unit of  inventory dam for drinking water 
𝐶𝐶𝑏𝑏𝑖𝑖:  Shortage cost for per unit of inventory dam for industry 
𝑎𝑎𝑘𝑘:  Quantity of allocated water for agriculture at the kth stage 
𝑐𝑐𝑘𝑘:  Quantity of allocated water for drinking at the kth stage 
𝑖𝑖𝑘𝑘:  Quantity of allocated water for industry at the kth stage 
𝑟𝑟𝑗𝑗:   jth possible state of arrival water to dam 
𝑢𝑢𝑙𝑙:  lth possible state of  water harvesting at the top of river 
𝑑𝑑𝑎𝑎,𝑒𝑒:  eth possible state for demand of agriculture 
𝑑𝑑𝑐𝑐,𝑓𝑓:  fth possible state for demand of drinking water 
𝑑𝑑𝑖𝑖,𝑔𝑔:  gth possible state for demand of industry 
𝑝𝑝𝑗𝑗:  Probability of jth possible state of arrival water to dam 
𝑝𝑝𝑢𝑢𝑙𝑙:  Probability of lth possible state of water harvesting at the top of river 
𝑝𝑝𝑒𝑒:   Probability of eth possible state for demand of agriculture 
𝑝𝑝𝑓𝑓:   Probability of fth possible state for demand of drinking water 
𝑝𝑝𝑔𝑔:   Probability of gth possible state for demand of industry 
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𝛼𝛼𝑛𝑛:  Minimum quantity of dam inventory 
𝑀𝑀𝑛𝑛: Maximum capacity of dam inventory during planning horizon 
𝛼𝛼𝑎𝑎:  Minimum quantity that should be allocated to agriculture 
𝛼𝛼𝑐𝑐:  Minimum quantity that should be allocated to drinking water 
𝛼𝛼𝑖𝑖:  Minimum quantity that should be allocated to industry 
𝑆𝑆𝑘𝑘:  State variable at the kth stage 
𝑥𝑥𝑘𝑘:  Decision variable at the kth stage 

𝐶𝐶𝑘𝑘,𝑗𝑗,𝑙𝑙(𝑆𝑆𝑘𝑘, 𝑥𝑥𝑘𝑘):   Created cost subject to state variable and decision variable for jth possible state of arrival water 
to dam and lth possible state of water harvesting at the top of river at the kth stage                                                                             
  
(1a)   Min [𝐶𝐶𝑘𝑘(𝑆𝑆𝑘𝑘, 𝑥𝑥𝑘𝑘) + 𝑓𝑓𝑘𝑘+1∗ (𝑆𝑆𝑘𝑘+1)]                                                                      
 Subject to 
 

(1b)   𝑓𝑓𝑘𝑘∗(𝑆𝑆𝑘𝑘) = 𝑀𝑀𝑖𝑖𝑛𝑛∑ ∑ ∑ [𝐶𝐶𝑚𝑚,𝑗𝑗,𝑙𝑙(𝑆𝑆𝑚𝑚, 𝑥𝑥𝑚𝑚)]𝐿𝐿
𝑙𝑙=1 𝑝𝑝𝑗𝑗𝑝𝑝𝑢𝑢𝑙𝑙

𝐽𝐽
𝑗𝑗=1

𝑁𝑁
𝑚𝑚=1                                     

∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁                    ∀ 𝑗𝑗 = 1,2, … , 𝐽𝐽                ∀ 𝑙𝑙 = 1,2, … , 𝐿𝐿 
   
(1c)    𝐶𝐶𝑘𝑘,𝑗𝑗,𝑙𝑙(𝑆𝑆𝑘𝑘, 𝑥𝑥𝑘𝑘) = 𝐶𝐶𝑘𝑘,𝑗𝑗,𝑙𝑙(𝑛𝑛𝑘𝑘,𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘, 𝑖𝑖𝑘𝑘) = 𝐶𝐶ℎ�𝑛𝑛𝑘𝑘 + 𝑟𝑟𝑗𝑗 − 𝑎𝑎𝑘𝑘 − 𝑐𝑐𝑘𝑘 − 𝑖𝑖𝑘𝑘 − 𝑢𝑢𝑙𝑙� +𝐶𝐶𝑎𝑎 × 𝑎𝑎𝑘𝑘 + 𝐶𝐶𝑐𝑐 × 𝑐𝑐𝑘𝑘 + 𝐶𝐶𝑖𝑖 × 𝑖𝑖𝑘𝑘 + 𝐶𝐶𝑏𝑏𝑎𝑎 ×
∑ 𝑝𝑝𝑒𝑒 × �𝑑𝑑𝑎𝑎,𝑒𝑒 − 𝑎𝑎𝑘𝑘� + 𝐶𝐶𝑏𝑏𝑐𝑐 ×𝑒𝑒:𝑑𝑑𝑎𝑎,𝑒𝑒>𝑎𝑎𝑘𝑘   ∑ 𝑝𝑝𝑓𝑓 × �𝑑𝑑𝑐𝑐,𝑓𝑓 − 𝑐𝑐𝑘𝑘� + 𝐶𝐶𝑏𝑏𝑖𝑖 × ∑ 𝑝𝑝𝑔𝑔(𝑑𝑑𝑖𝑖,𝑔𝑔 − 𝑖𝑖𝑘𝑘𝑔𝑔:𝑑𝑑𝑖𝑖,𝑔𝑔>𝑖𝑖𝑘𝑘𝑓𝑓:𝑑𝑑𝑐𝑐,𝑓𝑓>𝑐𝑐𝑘𝑘

)  
 
(1d)      𝑛𝑛𝑘𝑘+1 = 𝑛𝑛𝑘𝑘 + 𝑟𝑟𝑗𝑗 − 𝑢𝑢𝑙𝑙 − 𝑎𝑎𝑘𝑘 − 𝑐𝑐𝑘𝑘 − 𝑖𝑖𝑘𝑘            

∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁                    ∀ 𝑗𝑗 = 1,2, … , 𝐽𝐽               ∀ 𝑙𝑙 = 1,2, … , 𝐿𝐿 
 
(1e)    𝛼𝛼𝑛𝑛 ≤  𝑛𝑛𝑘𝑘 + 𝑟𝑟𝑗𝑗 − 𝑢𝑢𝑙𝑙 − 𝑎𝑎𝑘𝑘 − 𝑐𝑐𝑘𝑘 − 𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑛𝑛                                            

∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁                  ∀ 𝑗𝑗 = 1,2 , … , 𝐽𝐽                  ∀ 𝑙𝑙 = 1,2, … , 𝐿𝐿 
 
(1f)     𝛼𝛼𝑎𝑎 ≤  𝑎𝑎𝑘𝑘 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑑𝑑𝑎𝑎,𝑒𝑒}              ∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁                                           
 
(1g)     𝛼𝛼𝑐𝑐 ≤  𝑐𝑐𝑘𝑘 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑑𝑑𝑐𝑐,𝑓𝑓}              ∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁          
                                    
(1h)     𝛼𝛼𝑖𝑖 ≤  𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑑𝑑𝑖𝑖,𝑔𝑔}               ∀ 𝑘𝑘 = 1,2, … ,𝑁𝑁                                              

𝑎𝑎𝑘𝑘 , 𝑐𝑐𝑘𝑘 , 𝑖𝑖𝑘𝑘 𝑠𝑠ℎ𝑜𝑜𝑢𝑢𝑙𝑙𝑑𝑑 𝑏𝑏𝑏𝑏 𝑖𝑖𝑛𝑛𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏𝑟𝑟 

 (1a) is objective function that minimizes total costs to optimize the model from first stage to kth stage. (1b) 
searches optimum state for each stage k by using expected cost. (1c) calculates cost subject to state variable 
and decision variable for jth possible state of arrival water to dam and lth possible state of water   harvesting 
at the top of river at the kth stage. (1d) is a balance equation that assures inventory balance at the kth stage 
according to arrival water to dam, water harvesting at the top of river and summation of water quantity 
allocated to regions. Constraint (1e) indicate limitation for allocated water according to minimum quantity of 
dam inventory and maximum capacity of dam inventory during planning horizon. Constraints (1f),(1g),(1h) 
indicate limitation for allocated water according to minimum quantity that should be allocated and demand 
maximum in agriculture, city and industry respectively.                                     
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The proposed method 

The presented model in previous section indicates a total scheme from system and inner relationships and 
shows only effective parameters and variables. Therefore a comprehensive algorithm should be presented to 
analyze and obtain optimum solutions. The following steps are described: 
Step1: Estimate effective parameters on the model 
Step2: Check out different allocation states for triple regions (a,c,i). 
Step 3: Check out demand and allocation quantity conditions ;  If all of the conditions are being established go 
to step 4, else return to step2. 
Step4: Calculate transition probability matrix assuming distribution of water harvesting probability 
distribution (u)  and arrival water probability distribution ( r). 𝑃𝑃𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖                                                                                                             
Step5: Calculate objective function (cost) for each of the transition states. 𝐶𝐶𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖 
Step6: Calculate expected cost according to transition probability matrix (𝑃𝑃𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖) and transition cost 
(𝐶𝐶𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖). 
                    
(2a)                     E(𝐶𝐶𝑚𝑚,𝑎𝑎,𝑐𝑐,𝑖𝑖) = ∑ 𝐶𝐶𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖 ×𝑛𝑛:max {𝑛𝑛}

𝑛𝑛:min {𝑛𝑛} 𝑃𝑃𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖                      

Step7: Calculate ∑ 𝑝𝑝𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑎𝑎,𝑐𝑐,𝑖𝑖
𝑛𝑛:max {𝑛𝑛}
𝑛𝑛:min {𝑛𝑛} × 𝑓𝑓𝑁𝑁+1∗ (𝑘𝑘) for each of the allocation states. 

Step8: Search minimum cost for each state (m) as the optimum allocation state at the stage N.  
 
(2b)  ∀𝑘𝑘: 𝑓𝑓𝑁𝑁∗(𝑘𝑘) = 𝑀𝑀𝑖𝑖𝑛𝑛[𝐸𝐸(𝐶𝐶𝑚𝑚,𝑎𝑎,𝑐𝑐,𝑖𝑖 + ∑ 𝑝𝑝𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖 × 𝑓𝑓𝑁𝑁+1∗ (𝑘𝑘)]𝑛𝑛:max {𝑛𝑛}

𝑛𝑛:min {𝑛𝑛}     

Step9: Check out stop condition; If the condition is being established the algorithm will finish, else return to 
previous stage and go to step7. 
 
Results and Discussion 
 
In this section, the results are expressed and they are discussed. Firstly, a numerical example is worked out 
and discussion is extended later.                  
Numerical example 
In this section, we bring a numerical example to illustrate how the model works and algorithm is followed. As 
pointed, the first week of June to the last week of August are considered as stages. The solving policy is 
considered backward i.e. the first stage is considered the last week of August (16th week) and the last stage is 
considered the first week of June (1th week). This example is a small scale from the main model and 
represent a comprehensive function of model and algorithm merely. Therefore, variables and parameters are 
rounded. The results of step1 that consists of effective parameters, has been presented in tables 1-7. 
 

Table 1:  Probability distribution of arrival water 
16 15 𝑟𝑟𝑗𝑗 
0.6 0.4 𝑝𝑝𝑗𝑗 

 
Table 2:   Probability distribution of water harvesting at the top of river 

15 14 13 12 a+c+i 
0.3 0.4 0.6 0.7 𝑝𝑝𝑢𝑢𝑙𝑙=2 
0.7 0.6 0.4 0.3 𝑝𝑝𝑢𝑢𝑙𝑙=3 
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Table 3:  Probability distribution of demand in agriculture 
8 7 𝑑𝑑𝑎𝑎,𝑒𝑒 

0.5 0.5 𝑝𝑝𝑒𝑒 
 

Table 4:  Probability distribution of demand in city 
5 4 𝑑𝑑𝑐𝑐,𝑓𝑓 

0.4 0.6 𝑝𝑝𝑓𝑓 
 

Table 5:  Probability distribution of demand in industry 
2 1 𝑑𝑑𝑖𝑖,𝑔𝑔 

0.8 0.2 𝑝𝑝𝑔𝑔 

 
Table 6: Unit costs 

𝐶𝐶ℎ 𝐶𝐶𝑏𝑏𝑖𝑖 𝐶𝐶𝑏𝑏𝑐𝑐 𝐶𝐶𝑏𝑏𝑎𝑎 𝐶𝐶𝑖𝑖 𝐶𝐶𝑐𝑐 𝐶𝐶𝑎𝑎 

100 500000 600000 1000 200 600 100 
 

Table 7: Other parameters 
𝛼𝛼𝑖𝑖 𝛼𝛼𝑐𝑐 𝛼𝛼𝑎𝑎 𝑀𝑀𝑛𝑛 𝛼𝛼𝑛𝑛 
1 4 7 4 1 

 
After estimating the parameters, different allocations for triple parts (step2) are assessed by assuming 
allocation condition and demand condition (step3). After step2 and step3, transition probability matrix is 
calculated according to water probability distributions of water harvesting, arrival water and allocation that. 
The results are shown in table 8. The domain of states has been assumed fixed because simplicity of solving.                                                                                  
 

Table 8:  Transition probability matrix, 𝑃𝑃𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖 
𝑝𝑝𝑚𝑚,4,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝑝𝑝𝑚𝑚,3,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝑝𝑝𝑚𝑚,2,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝑝𝑝𝑚𝑚,1,𝑎𝑎,𝑐𝑐,𝑖𝑖 i c a m 

0 0.42 0.46 0.12 1 4 7 1 
0.42 0.46 0.12 0 1 4 7 2 

0 0.36 0.48 0.16 1 4 8 2 
0 0.36 0.48 0.16 1 5 7 2 
0 0.36 0.48 0.16 2 4 7 2 

0.36 0.48 0.16 0 1 4 8 3 
0.36 0.48 0.16 0 1 5 7 3 
0.36 0.48 0.16 0 2 4 7 3 

0 0.24 0.52 0.24 2 5 7 3 
0 0.24 0.52 0.24 2 4 8 3 
0 0.24 0.52 0.24 1 5 8 3 

0.24 0.52 0.24 0 2 5 7 4 
0.24 0.52 0.24 0 2 4 8 4 
0.24 0.52 0.24 0 1 5 8 4 

0 0.18 0.54 0.28 2 5 8 4 
 
Next step is calculating created cost to system or same objective function (1c) and expected cost for each 
allocation consecutively for each allocation. This results are shown in table9.  The mentioned table is also 16th 
stage of planning. Since 𝑓𝑓16∗ (m) is equal to zero, the results of 7th step is zero. Therefore, algorithm goes to 
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step8 and optimum solutions for 16th stage is searched here that the results are shown in table10. After 
searching optimum solutions, algorithm goes to step9, stop condition is checked out and algorithm proceeds 1 
stage according to not being established stop condition and algorithm returns to step7 again. Now, the 
calculations are done by assuming transition probability matrix and optimum values in the previous stage. 
These calculations and results are expressed in table11.    
 

Table 9:  Expected cost for different allocations 
E(𝐶𝐶𝑚𝑚,𝑎𝑎,𝑐𝑐,𝑖𝑖) 𝐶𝐶𝑚𝑚,4,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝐶𝐶𝑚𝑚,3,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝐶𝐶𝑚𝑚,2,𝑎𝑎,𝑐𝑐,𝑖𝑖 𝐶𝐶𝑚𝑚,1,𝑎𝑎,𝑐𝑐,𝑖𝑖 i c a m 

644030 0 644100 644000 643900 1 4 7 1 

644130 644200 644100 644000 0 1 4 7 2 

643620 0 643700 643600 643500 1 4 8 2 

404620 0 404700 404600 404500 1 5 7 2 

244220 0 244300 244200 244100 2 4 7 2 

643720 643800 643700 643600 0 1 4 8 3 

404720 404800 404700 404600 0 1 5 7 3 

244320 244400 244300 244200 0 2 4 7 3 

4800 0 4900 4800 4700 2 5 7 3 

243800 0 243900 243800 243700 2 4 8 3 

404200 0 404300 404200 404100 1 5 8 3 

4900 5000 4900 4800 0 2 5 7 4 

243900 244000 243900 243800 0 2 4 8 4 

404300 404400 404300 404200 0 1 5 8 4 

4390 0 4500 4400 4300 2 5 8 4 

 
Table 10:  Optimum allocations for 16th stage 

i c a m 

1 4 7 1 
2 4 7 2 

2 5 7 3 

2 5 8 4 

 
Table 11:  The results of  calculations for different allocations at the 15th stage 

Sum E(𝐶𝐶𝑚𝑚,𝑎𝑎,𝑐𝑐,𝑖𝑖) � 𝑝𝑝𝑚𝑚,𝑛𝑛,𝑎𝑎,𝑐𝑐,𝑖𝑖

𝑚𝑚=4

𝑚𝑚=1

× 𝑓𝑓16∗ (𝑘𝑘) 𝑓𝑓16∗ (4) 𝑓𝑓16∗ (3) 𝑓𝑓16∗ (2) 𝑓𝑓16∗ (1) i c a m 

835670.4 644030 191640.8 4390 4800 244220 644030 1 4 7 1 

677488.2 644130 33358.2 4390 4800 244220 644030 1 4 7 2 

865618.4 643620 221998.4 4390 4800 244220 644030 1 4 8 2 

626618.6 404620 221998.4 4390 4800 244220 644030 1 5 7 2 

466218.4 244220 221998.4 4390 4800 244220 644030 2 4 7 2 

686679.6 643720 221998.4 4390 4800 244220 644030 1 4 8 3 
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447679.6 404720 42959.6 4390 4800 244220 644030 1 5 7 3 

287279.6 244320 42959.6 4390 4800 244220 644030 2 4 7 3 

287513.6 4800 282713.6 4390 4800 244220 644030 2 5 7 3 

526513.6 243800 282713.6 4390 4800 244220 644030 2 4 8 3 

686913.6 404200 282713.6 4390 4800 244220 644030 1 5 8 3 

67062.4 4900 62162.4 4390 4800 244220 644030 2 5 7 4 

306062.4 243900 62162.4 4390 4800 244220 644030 2 4 8 4 

466462.4 404300 62162.4 4390 4800 244220 644030 1 5 8 4 

317461.2 4390 313071.2 4390 4800 244220 644030 2 5 8 4 

 
Table 12: Optimum allocations for 15th stage 

i c a m 
1 4 7 1 
2 4 7 2 
2 4 7 3 
2 5 7 4 

 
This process continues to obtain the optimum solutions for all the stages that is not possible expressing the 
calculations of all the stages according to their abundance.                                                                       

Discussion 

The unit costs have a special form in this study because the special structure of the model in the study; 
Holding cost (𝐶𝐶ℎ) and conduction costs (𝐶𝐶𝑎𝑎,𝐶𝐶𝑐𝑐 ,𝐶𝐶𝑖𝑖) have less effect on the optimum solutions in comparison with 
shortage costs (𝐶𝐶𝑏𝑏𝑎𝑎,𝐶𝐶𝑏𝑏𝑐𝑐 ,𝐶𝐶𝑏𝑏𝑖𝑖). Therefore, shortage costs play the main role in the model strategy and shortage 
costs for city and industry have more effect in comparison with shortage cost for agriculture. By considering 
this characteristic, as algorithm continues, optimum solutions for each inventory dam (m) converges to special 
allocations e.g. for m=4, optimum solution converges to a=7, c=5, i=2. This pattern is not general for all the 
years definitely and depends rainfall patterns and somewhat demands.                                                                      
The demands, arrival water and water harvesting have been estimated and forecasted according to regression 
concept and latest data; if these parameters and variables can be continuous, the solutions will be more 
precise. 
The precipitation of water in this model has been underestimated. But we can exert this factor by raising the 
accuracy of input parameters and input variables. 

Conclusions 

This study presented a new method for water allocation by using stochastic dynamic programming. Since this 
method encompasses the whole of states of allocation and assume the total of affecting parameters in the 
model, it can be generalized in any region where can face arid condition; but it is sufficient that the 
geographical conditions and rainfall patterns are considered in the model. 
The solutions will be more precise if the continuous distributions can be used for arrival water and demands. 
Normal distribution can help in these cases. If we want to obtain a more realistic model, we can present 
different distributions in proportion to each stage for demands; but the calculations will be more extensive. 
Stochastic dynamic programming can be integrated with metaheuristic methods to obtain more precise and 
more realistic solutions. 
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