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Abstract: The present study examined a simple four-bar mechanism. Four-bar linkage is one of the most 
common and most useful mechanisms in engineering. The first member of such a mechanism is ground to 
which the second and the fourth members are hinged and pivot about it. These two members are called 
cranks. The third member, the linking bar, is connected to two cranks. The members considered herein for the 
proposed mechanism are flexible which makes them have deflections during rotation. Each of the three 
integrated members of the proposed mechanism have been divided to discrete masses and their deflections 
have been computed for a given time period (from the beginning to the end of the motion). The more the 
members’ divisions, the more realistic the answer to the problem will be. First of all, the mass point 
acceleration was calculated and then the motion equations of the members were obtained. Finally, the 
member deflection was computed using Euler-Bernoulli method. 
 
Keywords: Elastic Four-Bar Mechanism, Concentrated Mass Method, Analytical and Numerical Solutions, 
Deflection 

INTRODUCTION 

The elasticity theory in fact deals with the study of the extent to which the elastic environments undergo 
changes subject to stresses and exerted forces. Elasticity of an environment causes every deviant part to 
return to its initial equilibration. There are numerous studied conducted regarding elastic mechanisms. These 
researches have been focused on three mechanisms, namely basic four-bar linkage, slider-crank and rapid 
return. 
Deformation in such mechanisms can be accompanied by unfavorable outcomes such as spatial imprecision, 
alternative stresses resulting in fatigue as well as unwanted vibration and noises. Moreover, instability of 
elastic mechanisms is of a great importance.  
The entire dynamic analyses pertaining to the flexibility of the linkage members and robots are drawn on the 
member rigidity assumption which is of course not always true. It was deemed necessary with the progress in 
technology and fast increase in the machines’ speed to reconsider the authenticity of the foresaid assumption 
because the system members’ inertia forces effects are increased considerably in higher speeds that cause 
vibrations and elastic deformation at the same time with the system’s rigid motion. The vast use of composite 
materials in machines added to the importance by twice as much of the studies in this regard. 
It is evident considering the elastic deformations in such mechanisms that the input-output relationship 
differs from that of the rigid systems. Unlike the rigid state, the input-output relationship of the elastic 
mechanism cannot be solely obtained via mechanism geometry rather an elastodynamic analysis is required. 
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It is worth mentioning that attentions have been largely directed at flexibility of the mechanism hinges and 
robots plus the members’ flexibility during the past few decades. 
Many researches have been carried out on elastic mechanisms. Alexander and Lawrence experimentally 
investigated the dynamic response of the elastic mechanisms (Alexander R. M., et al., 1974; Alexander R. M., 
et al., 1973). They were the first who performed researches on the empirical analysis of perfectly elastic four-
bar mechanisms. In (Winfrey R. C., 1971; Winfrey R. C., 1972; Erdman A. G., et al., 1972; Erdman A. G., et 
al., 1971; Imam I., et al., 1973) the elastic mechanisms were subjected to analytical studies. Sedler and 
Sonder investigated a four-bar mechanism based on concentrated mass method (Sadler J. P., et al., 1973). The 
model was based on nonlinear equations extracted according to Euler-Bernoulli theory. They obtained the 
elastic deformations of the three moving members of a four-bar mechanism. Sedler and Sonder calculated the 
dynamic strains and stresses of the four-bar mechanism members in another study (Sadler J. P., 1975). They 
also examined a four-bar mechanism only one member of which was elastic in another study (Sadler, J. p., et 
al., 1974). The present study deals with the analysis of an elastic four-bar mechanism based on concentrated 
mass method following which the Euler-Bernoulli theory will be used to compute the mechanism members’ 
deformations. 
Concentrated Mass Method and Equations Governing the Problem:  

A member is divided to several equal parts in concentrated mass method and the total mass of every part is 
considered situated at the center. The volumetric mass of the entire body is assumed fixed hence the entire 
points have the same masses. 
Figure (1) illustrates a bar featuring an elasticity module, E, and area moment of inertia, I. Considering a bar 
of the length L and dividing it to N equal parts, the length of each part will be equal to 2l = L

N
. If the mass of 

every part is considered positioned in the center, the total value of the point masses will be equal to the total 
mass of the bar. 

M=∑ 𝑚𝑚𝑗𝑗
𝑁𝑁
𝑗𝑗=1                                                                                               (1) 

 

 
Figure 1. a double-hinged bar and its mass points 

 

The planar motion of a rigid body is obtained by X(t) and Y(t) coordinates and θ(t) angle that are connected to 
X-Y coordinate system. The mobile x-y coordinate system is mounted on the beam and its deformation in 
respect to the beam axis is described by the function y (x, t). The boundary conditions for a double-hinged 
beam are as shown in equation (2). 

 y (0, t) =y (L, t) =0                                                                                          (2) 
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The bend curve of the beam is expressed through the function vj(t), j=1, …, N, where vj(t) is the transversal 
displacement of the mass mj, (y (x, t) =vj(t)). 

The position of the mass, mj, is expressed as demonstrated in equation (3) for a fixed coordinate along the 
mobile coordinate in which 𝚤𝚤 and 𝚥𝚥 are the unit vectors. 

𝜌𝜌𝚥𝚥���⃗ =[X cosθ+Y sinθ + (2j−1)l] 𝚤𝚤 +[Y cosθ−X sinθ+v𝑗𝑗] 𝚥𝚥                                                        (3) 

Performing differentiation in respect to time twice on equation (3) gives the absolute acceleration of mj mass. 

axj = Ẍcosθ + Ÿsinθ − (2j − 1)lθ̇2 − 2θ̇v̇j − θ̈vj                                                                          (4) 

ayj = −Ẍcosθ + Ÿsinθ + (2j − 1)lθ̈ + v̈j − θ̇2v                                                                        (5) 

the inertia of a member causes deflection in motion for which the D’Alembert’s principle is used. The 
transversal and longitudinal forces pertinent to mj are: (Sadler J. P., et al., 1974) 

 Dxj=-mjaxj                                                                                                                          (6) 

Dyj=-mjayj                                                                                                                           (7) 

These forces are the elastic members’ forces and they can be also used when writing the external forces. 
According to figure (2), O1 is the beginning and A is the ending parts of the first arm; A is the beginning and 
B is the ending part of the second arm, as well. O2 is the beginning and B is the ending part of the third arm. 

 

Figure 2. a four-bar mechanism featuring a hinge A between the first and the second members and the hinge 
B between the second and third members 

It can be concluded based on figure (3) for all three arms using D’Alembert’s principle and exerting the 
supporting forces on the first arm and writing the equilibrium equations that: 

 
Figure 3. the free diagram of the first member of the four-bar mechanism 

Po1+PN1 ∑ 𝐷𝐷yj1
𝑁𝑁1
𝑗𝑗=1 =0                                                                                                           (8) 

PN1.L1+∑ (2j − 1)𝑙𝑙1𝐷𝐷yj1
𝑁𝑁1
𝑗𝑗=1 − ∑ v𝑗𝑗1

𝑁𝑁1
𝑗𝑗=1 𝐷𝐷xj1+T=0                                                             (9) 

Inserting equation (9) in equation (8) gives: 
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             PN1 =  −  ∑ 𝑙𝑙1
L1

(2j − 1)𝐷𝐷yj1
𝑁𝑁1
𝑗𝑗=1 + ∑ v𝑗𝑗1

L1

𝑁𝑁1
𝑗𝑗=1 𝐷𝐷xj1 − T

L1
                                                                                     (10) 

Po1 = − ∑ [ 𝑙𝑙1
L1

(2j − 1) − 1]𝐷𝐷yj1
𝑁𝑁1
𝑗𝑗=1 − ∑ v𝑗𝑗1

L1

𝑁𝑁1
𝑗𝑗=1 𝐷𝐷xj1+ T

L1
                                                                                  (11) 

As for the second and the third arm, it can be written similar to the first arm and without the torque T that: 

+ ∑ v𝑗𝑗2

L2

𝑁𝑁2
𝑗𝑗=1 𝐷𝐷xj2                                                                                                                        (12) 

Po2=− ∑ �𝑙𝑙2
L2

(2j − 1) − 1� 𝐷𝐷yj2
𝑁𝑁2
𝑗𝑗=1 − ∑ v𝑗𝑗2

L2

𝑁𝑁2
𝑗𝑗=1 𝐷𝐷xj2                                                                  (13) 

                         PN3= − ∑ 𝑙𝑙3
L3

(2𝑗𝑗 − 1)𝐷𝐷yj3
𝑁𝑁3
𝑗𝑗=1 +∑ v𝑗𝑗3

L3

𝑁𝑁3
𝑗𝑗=1 𝐷𝐷xj3   (14) 

Po3=− ∑ �𝑙𝑙3
L3

(2j − 1) − 1� 𝐷𝐷yj3
𝑁𝑁3
𝑗𝑗=1 − ∑ v𝑗𝑗3

L1

𝑁𝑁3
𝑗𝑗=1 𝐷𝐷xj3                                                                 (15) 

Using the continuity equation for the hinge A, it can be written that: 

 
Figure 4. free diagram of the hinge A of the first and second members 

 PN1cosθ1+QN1sinθ1+Qo2sinθ2+Po2cosθ2=0                                                                   (16) 

PN1sinθ1+Po2 sinθ2= QN1cosθ1+Qo2 cosθ2                                                                       (17) 

The amounts of QO2 and QN1 are obtained in the form of equations (18) and (19) through solving the equations 
(16) and (17): 

  Qo2=𝑃𝑃𝑁𝑁1+𝑃𝑃𝑂𝑂2cos (𝜃𝜃1−𝜃𝜃2)
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃1−𝜃𝜃2)

                                                                                                         (18) 

QN1=𝑃𝑃𝑁𝑁1 cos(𝜃𝜃2−𝜃𝜃1)+𝑃𝑃𝑂𝑂2
sin (𝜃𝜃2−𝜃𝜃1)

                                                                                                         (19) 

Using the continuity equation for the hinge B, it can be written that: 

 

Figure 5. free diagram of the Hinge B of the second and third members 

PN2cosθ2+QN2sinθ2+PN3cosθ3+𝑄𝑄N3sinθ3=0                                                                 (20) 

QN2cosθ2+𝑄𝑄N3cosθ3=PN2sinθ2+PN3 sinθ3                                                                      (21) 
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The amounts of QO2 and QN1 are obtained in the form of equations (22) and (23) through solving the equations 
(20) and (21): 

QN2=PN3+PN2cos (θ3−θ2)
cos (θ3−θ2)

                                                                                                (22) 

QN3=-PN3 cos(θ3−θ2)+PN2
sin (θ3−θ2)

                                                                                               (23) 

Having the QN1, QN2 and QN3 values, it can be concluded through writing the equilibrium equation along the 
first arm that: 

Qo1= − QN1 − ∑ Dxj1
N1
j=1                                                                                               (24) 

Similarly, it can be concluded for the other two arms that: 

Qo2=− QN2 − ∑ Dxj2
N2
j=1                                                                                                (25) 

Qo3=− QN3 − ∑ Dxj3
N3
j=1                                                                                                (26) 

The following measures are taken to calculate the force couple exerted on the first arm. Firstly, according to 
the relation (25) and inserting the relation (18) in lieu of QO2, it can be concluded that: 

PN1+PO2cos (θ1−θ2)
sin (θ1−θ2)

=− QN2 − ∑ Dxj2
N2
j=1                                                                            (27) 

Now, it can be written through inserting the relation (10) that: 

− ∑ l1
L1

(2j−1)Dyj1
N1
j=1 +∑

vj1
L1

N1
j=1 Dxj1− T

L1
+PO2cos (θ1−θ2)

sin (θ1−θ2)
=− QN2 − ∑ Dxj2

N2
j=1                                                        (28) 

Then, the amount of T couple is obtained in the form of equation (29) through organizing the abovementioned 
relation: 

T=L1sin(θ1θ2)[ 
− ∑ l1

L1
(2j−1)Dyj1

N1
j=1 +∑

vj1
L1

N1
j=1 Dxj1+PO2cos (θ1−θ2)

sin (θ1−θ2)
+QN2+∑ Dxj2

N2
j=1 ]                                                 (29) 

The static equilibrium equations include 9 equilibrium equations and 4 continuity equations in A and B 
hinges.  
Next, the deflection equations of all the mass points of the four-bar mechanism members are written. The 
deformation equation is obtained using Euler equation for elastic curve. The linear form of the Euler’s 
differential equation for the beams is as shown in equation (30): 

EI∂2y
∂x2=M(x,t)                                                                                                                (30) 

Where, M (x, t) is the flexural moment in point x. Assuming a trivial value of deflection allows the substitution 
of the approximate term 𝜕𝜕2𝑦𝑦

𝜕𝜕𝑥𝑥2 for elastic curvature but the assumption does not cancel the participation of the 
longitudinal forces in the transversal displacement of the beam. The finite difference approximation 
transforms the partial differential equation, shown in relation (30), to an ordinary equation system, relation 
(31). 

EI (∆2v
∆x2)i=Mi(t)                                                                                                   (31) 
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Through expanding second-order Taylor polynomial for yi-1 and yi around xi point, we will have: 

yi-1≈yi-∆xi(
∂y
∂x

)i+
1
2

(∆xi)2(∂2y
∂x2)i                                                                                     (32) 

yi+1≈yi+∆xi+1(∂y
∂x

)i+
1
2

(∆xi+1)2(∂2y
∂x2)i                                                                        (33) 

Omitting  (∂y
∂x

)i  from the above equation and considering vi=yi: 

(∆2v
∆x2)i=

2
∆xi∆xi+1(∆xi+∆xi+1)

[∆xi+1vi-1-(∆xi + ∆xi+1)vi+∆xivi+1]                                                    (34) 

The exertion of equation (31) on various mass points on the beam results in motion equation. The motion 
equations for the first arm, second arm and third arm include N1 equations, N2 equations and N3 equations, 
respectively: 

i=1                      EI
8l2(-8v1+8

3
v2)=M1                                                                                        (35) 

i=2,3,…,N-1       EI
8l2(2vi-1-4vi+2vi-1)=Mi                                                                                (36) 

                           i=N                       EI
8l2(8

3
vN-1-8vN)=MN  (37) 

The bending moments, Mi, of the three members of the four-bar mechanism considering the members’ cross-
section are calculated as shown in the equations (38), (39) and (40): 

Mi1=(2i-1)l1Po1-vi1QO1+∑ 2(i − j)i
j=1 l1Dyj1-∑ (vi1

i
j=1 -vj1)Dxj1-T                                             (38) 

Mi2=(2i-1)l2Po2-vi2QO2+∑ 2(i − j)i
j=1 l2Dyj2-∑ (vi2

i
j=1 -vj2)Dxj2                                                 (39) 

Mi3=(2i-1)l3Po3-vi3QO3+∑ 2(i − j)i
j=1 l3Dyj3-∑ (vi3

i
j=1 -vj3)Dxj3                                                 (40) 

Analyzing the Position, Velocity and Angular Acceleration: 

A planar four-bar mechanism has been displayed in figure (6). The O1 and O2 hinges are fixed parts of the 
mechanism and A and B hinges’ deflections are zero. The A and B hinges’ position is determined given the 
angular position of the first member. Therefore, the positions of the mechanism members are computed as 
below. 
The closed loop condition of the mechanism is determined via the vector equation given in relation (41): 

 
Figure 6. a planar four-bar mechanism with its first, second and third members featuring lengths equal to L1, 

L2 and L3, respectively 

L1eiθ1+ L2eiθ2=L4+ L3eiθ3                                                                                        (41) 
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Equation (42) is obtained through determining L2eiθ2: 

L2eiθ2=L4+ L3eiθ3 -L1eiθ1                                                                                         (42) 

Equation (43) is obtained via considering the binary form of each sentence in equation (42): 

L2e−iθ2=L4+L3e−iθ3-L1e−iθ1                                                                                     (43) 

The multiplication sum of the equations (42) and (43) is given in equation (44): 

L22= L42+ L12+ L32+ L3 L4(eiθ3+e−iθ3)- L1 L4(eiθ1+e−iθ1)-L1L3(eiθ1. e−iθ3+e−iθ1. eiθ3)                            (44) 

It can be concluded using Euler’s expansion that: 

L22= L42+ L12+ L32+ 2L3 L4cosθ3- 2L1 L4cosθ1- 2L1 L3 cosθ3 cosθ1- 2L1 L3 sinθ3 sinθ1                                  (45)                

It is written using trigonometric identities that: 

 cosθ3=1−d2

1−d2                                                                                                                                   (46) 

sinθ3= 2d
1+d2                                                                                                                                   (47) 

Where,  

d=tan(θ3
2

)                                                                                                                                   (48) 

Substituting these relations in equation (45) then multiplying them in (1+d2) and classification of the sentences gives: 

ad2+bd+c=0                                                                                                                 (49) 

Where,  

a= L22- L42- L12- L32+ 2L3 L4+2L1 L4cosθ1- 2L1 L3cosθ1 

b=4L1 L3 sinθ1 

c= L22- L42- L12- L32+ 2L3 L4-2L1 L4cosθ1+2L1 L3cosθ1 

d=−b±�b2−4ac
2a

                                                                                     (50) 

The two d values resulting from the equation gives two different θ3 values belonging to each branches of the 
mechanism. θ2 value is obtained using equations (51) and (52): 

Cosθ2=L4+L3cosθ3−L1cosθ1
L2

                                                                         (51)  

sinθ2=L3sinθ3−L1sinθ1
L2

                                                                               (52) 

The velocity equation is obtained through differentiation using closed loop equation: 

-L1(sinθ1) ω1-L2(sinθ2) ω2 +L3(sinθ3) ω3=0                                                          (53) 

L1 (cosθ1) ω1+L2(cosθ2) ω2-L3(cosθ3) ω3=0                                                         (54) 
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L1, L2, L3, L4 and θ1 are considered certain and θ2 and θ3 values are obtained from position analysis. 
Moreover, the angular velocity of the input link, slider, is definite. This way, the ungiven values of the above-
cited equations are the angular velocities of the levers 2 and 3. 
Therefore, these equations can be rewritten in the form of equations (55) and (56): 

Aω2+B ω3=C                                                                                   (55) 
Dω2+E ω3=F                                                                                   (56) 

Where, the A to F values are calculated as demonstrated below: 

A=-L2 (sinθ2) 
B= L3 (sinθ3) 
C= L1 (sinθ1)  
D= L2 (cosθ2) 
E=-L3 (cosθ3) 

     F=- L1 (cosθ1) ω1                                                                            (57) 

Such a writing style clearly indicates that equations (55) and (56) are linear considering such ungiven values 
as ω2 and ω3. Solving this pair of equation gives: 

ω2=FB−EC
DB−EA

                                                                                            (58) 

ω3=DC−FA
DB−EA

                                                                                           (59) 

The acceleration equations are obtained through time-based differentiation of velocity equations: 

-L1(cosθ1) ω12-L1(sinθ1) α1-L2(cosθ2) ω22-L2(sinθ2) α2+L3(cosθ3) ω32+L3(sinθ3) α3=0                       (60) 

L1(sinθ1) ω12+L1(cosθ1) α1-L2(sinθ2) ω22+L2(cosθ2) α2+L3(sinθ3) ω32-L3(cosθ3) α3=0                      (61) 

It is assumed in solving acceleration equation that θ1, ω1, α1, L1, L2, L3 and L4 are definite and that the θ2, θ3, 
ω2 and ω3 have been obtained from position and velocity analyses. Therefore, the only uncertainties of the 
abovementioned equations are the angular accelerations of links 2 and 3, to wit α2 and α3. So, the equations 
(60) and (61) can be rewritten as equations (62) and (63): 

Aα2+Bα3=C�                                                                                                (62) 

Dα2+Eα3=F�                                                                                                 (63) 

Where, A to F values are calculated as demonstrated in equation (64): 

A=-L2 (sinθ2) 

B= L3 (sinθ3) 

C’= L1(cosθ1) ω12+L1(sinθ1) α1+ L2(cosθ2) ω22- L3(sinθ3) ω32 

D= L2(cosθ2) 

E=-L3(cosθ3) 

F’= L1(sinθ1) ω12-L1(cosθ1) α1+ L2(sinθ2) ω22- L3(sinθ3) ω32                                       (64) 
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A, B, D and E values are the same amounts used in velocity analysis hence there is no need for recalculating 
them. The forms of the equations (62) and (63) clearly show that they are linear in respect to such 
uncertainties as α2 and α3 and it can be concluded from solving them that:     

α2=F�B−EC�
DB−EA

                                                                                                (65) 

α3=DC� −F�A
DB−EA

                                                                                                (66) 

Forming the Differential Equation System: 

Equations (35), (36) and (37) pertain to the three arms, reaching in number to N1+N2+N3 equations, and they 
have to be solved together due to the fact that the reactions of the connections to the forces are coupled. To 
attain a set of systematic equations in regard of the aforementioned relations, Mi values have to be obtained 
from equations (38), (39) and (40) and the values of Po and Qo forces that had been previously obtained have 
to be replaced therein. It is in this case that the aforementioned equations will have Dxi and Dyi terms based on 
D’Alembert’s forces. Finally, the equation system will be transformed into a second-order differential equation 
as shown in equation (67) by substituting equations (6) and (7). 

[M]{v̈}+[k]{v}={F}                                                                                    (67) 

The next stage is solving these equations through numerical integration. To calculate Dxi and Dyi terms, 
firstly Ẍ and Ÿ values will be computed for all three arms. The first and the third members’ hinges are 
immovable due to the fact that they are connected to a fixed point like the ground. 

Ẍ1=Ÿ1=0                                                                                                    (68) 

Ẍ3=Ÿ3=0                                                                                                    (69) 

As for the second arm, the position equation of the hinge A is written. Then, it is differentiated twice based on 
time so that the Ẍ and Ÿ pertaining to the second arm could be obtained. 

X2=L1cosθ1                                                                                                 (70) 

Y2=L1sinθ1                                                                                                 (71) 

It can be written through twice integration of the relations (70) and (71) that: 

Ẍ2=- L1(θ̈1sinθ1+θ̇12cosθ1)                                                                      (72) 
Ÿ2=−L1(θ̈1sinθ1+θ̇12cosθ1)                                                                   (73) 

Values axi and ayi will be obtained for all three arms through inserting Ẍ and Ÿ values in relations (4) and (5) 
following the substitution of which in relations (6) and (7) Dxi and Dyi will be obtained for all three arms. 
Inserting the obtained values in relations (38), (39) and (40) and performing a little simplification provides for 
the omission of second-order values v and vv̈ due to their being trivial. Also, because the simplification 
operation is accompanied by the addition of a dampening matrix to equation (67) and it will be multiplied by 
the column vector {v̇}, thus the amount 2v̇θ̇ is disregarded. In the end, values Mi1, Mi2 and Mi3 are calculated 
and inserted in equations (35), (36) and (37) that will be subsequently transformed to the equation system 
shown in relation (74): 

[M]{v̈}+[k]{v}={F}                                                                                   (74) 

Square Matrix [M] is the mass matrix and (N1+N2+N3)-dimensional. The Matrix [K] is a square stiffness 
matrix featuring dimensions the same as mass matrix. The column vectors v̈, {v}, {F} and have (N1+N2+N3) 
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members. The elements of the vector {v} respectively are the first, the second and the third members’ mass 
point deflections. The general form of the mass and stiffness matrix is in such a way that the mass and 
stiffness equivalents of the first member’s mass point, followed by those of the second member and then the 
third member are determined at first. Introducing an appropriate damping matrix [C] gives the equation (75) 
(Nath P. K., et al., 1980): 

[M]{v̈}+[C]{v̇}+[k]{v}={F}                                                                        (75) 

Matrix [c] can be considered as the linear combination of [M] and [K] matrices. 

[C]=β1[M]+ β2[K]                                                                                (76) 

Where, 𝛽𝛽1and 𝛽𝛽2 depend on the material from which the members are made. 
The coefficients are functions of time in these equations. The solution method is as follows: the time domain is 
divided into several parts and it is assumed that the coefficients are constant for each of them. The method is 
advantageous in that the steady solution of each problem is obtained directly removing the need for long 
integrals in numerous consecutive cycles. 

Numerical Solution of Differential Equations: 

The equation (77) is a second-order ordinary differential equation which is nonlinear and coupled and it has to 
be solved numerically. The methods commonly used for numerical integration of such equations are: Rung-
Kutta method, Wilson method and Newmark method. Herein, there was made use of Newmark method. 

[M]{v̈}+[C]{v̇}+[k]{v}={F}                                                                    (77) 

In Newmark method, the amounts of vectors {v̈}, {v̇} and {v} for the instant t=tn are considered definite based 
on which the amounts of these same vectors are calculated for the instant t= tn+1 and the determined 
amounts of these vectors for the foresaid instant are used for the next instant. The important point in such an 
operation is the solution stability and the lack of error accumulation. The solution is rendered stable 
considering an optimum value for Δt and proper amounts for α and β. Based on Newmark method, the 
differential equation system (77) is converted to the linear system of the equation (78): 

[A�]{v}n+1={P}n+1                                                                                                       (78) 

Where, matrix [𝐀𝐀�] and vector {P}n+1 are transformed to equations (79) and (80): 

[A�]=[K]+ao[M]+a5[C]                                                                                   (79) 

{P}n+1={F}n+1+[n](ao{v}n+a1{v̇}n+a2{v̈}n)+[C](a5{v}n+a6{v̇}n+a7{v̈}n)                                              (80) 

Where, the constant coefficients a0 to a7 are obtained as shown in relation (81): 

ao= 1
β∆t2             a1= ao∆t 

 a2= 1
2β

-1          a3=(1- α)∆t 

a4=α∆                a5= α
β∆t

 

           a6=α
β

-1               a7=∆t
2

(α
β
-2)                                                                           (81) 

The constant coefficients are found equal to α=1
2
 and β=1

4
. 
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Solving the linear equation system gives the amount of the vector β=1
4
 as demonstrated in the equation (82): 

            {v̈}n+1= ao({v}n+1-{v}n) - a1{v̇}n- a2{v̈}n                                                            (82) 

Therefore, the vector {v̇}n+1 is calculated as shown in the equation (83): 

{v̇}n+1={v̇}n+ a3{v̈}n+ a4{v̈}n+1                                                                                                                   (83) 

The amounts of {v̈}n+2, {v̇}n+2 and {v}n+2 can be obtained through rewriting the abovementioned equations and 
repeating this same process gives the amount of the vector and its temporal derivatives for any instant (J. N. 
Reddy, 2005). 
The preliminary conditions for solving this differential equation are a {v}n vector value and its temporal 
derivatives at t=0. It is assumed in solving the equation that the amounts of all the vectors are zero in the 
onset, meaning that the motion begins from a static state and with no elastic deformation. There are four 
boundary conditions in solving the equation. The number of the boundary conditions depends on the number 
of hinges used in the mechanism. The elastic deformation of the hinges is considered equal to zero. The fist 
hinge wherein the first member is connected to the ground, is fixed and its elastic displacement along the 
longitudinal and transversal axes occurs in point zero on which the torque force, T, is exerted. The fourth 
hinge is also fixed and with no exertion of torque force. The second hinge as the connection point of the first 
and second members, and the third hinge, as the connection point of the second and third members, both are 
devoid of any elastic deformation and exertion of torque force. 

Statement of Problem, Diagrams and Results Analysis 

The following data are the inputs to the mechanism depicted in figure (7): 

                                                                E=200Gpa          I=2× 10−10m4         𝜌𝜌=7800 𝐾𝐾𝐾𝐾
𝑚𝑚3 

                                                                L1=0.3m              L2=0.8m                      L3=0.6m              L4=0.7m   
                                                                m1=0.118kg       m2=0.314kg               m3=0.235kg 
                                                                n1=5                      n2=13                           n3=10                  θ1=30˚ 
                                                                T=3Sec                 N=30                            α1=0.85𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠2          𝜔𝜔1=0.1𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠

 

 
Figure 7. a four-bar mechanism and its variables 

The mechanism members feature filled and uniform circular cross-sections and they are made of steel. In the 
computer program that has been written using MATLAB software, the θ2, θ3, ω2, ω3, α2 and α3 values are firstly 
obtained at the n-th instant after inserting the input data then the stiffness matrix [k] and mass matrix [M] 
are calculated. Next, θ2, θ3, ω2, ω3, α2 and α3 values are obtained at (n+1)-th instant based on which the force 
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matrix [F] amounts are calculated following which Newmark method is used to determine the elastic 
displacement values of all the masses. The motion is considered zero for all of the masses due to {v}, {v̇} and 
{v̈} being assumed zero. 
Figure (8) exhibits the deflection diagram of the first and the third points of the first member for the given 
time span. It is evident from the diagram that the deflections of the two points are zero at the beginning of the 
motion and that the third point’s deflection is higher than that of the first point for during the entire time 
span. 

 
Figure 8. the deflection in the first member’s first and third mass points in a four-bar mechanism in the 

course of time 

Figure (9) illustrates the deflection diagram of the second and ninth mass points of the second member for a 
time span between zero and three second. As it can be seen, the mass points’ deflection is opposite to the 
movement direction at the beginning of the motion. Also, the ninth mass point’s deflection was found higher 
than that of the second mass point for the entire motion duration. 

 
Figure 9. deflection in second and ninth mass points of the second member of the four-bar mechanism in time 

Figure (10) demonstrates the deflections of the second and sixth mass points of the mechanism’s third 
member. The deflections are opposite to the movement direction in the beginning of the motion. Moreover, the 
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sixth mass point is situated in the midsection of the third member and its deflection is always higher than the 
member’s second mass point. 

 
Figure 10. the deflections of the third member’s second and sixth mass points in a four-bar mechanism in time 

Figure (11) shows the deflection of the second member’s mass points for two different mass divisions of the 
second member. As it can be observed, the deflections of the beginning and ending parts of the member are 
zero. Furthermore, it was found out that the middle points have deflections higher in rate than the lateral 
points. The two diagrams almost match for the two mass divisions indicating the authenticity of the results. 

 

Figure 11. the deflection of the four-bar mechanism’s second member based on the bar length for the two 
different mass divisions 

Figure (12) displays the third member’s deflection for two mass divisions in a given instant. It can be 
understood from the diagram that the beginning and the ending mass points of the third members have no 
deflections and the midpoints of the members have the highest deflection rates. The match of the two 
diagrams for these two different states is reflective of the accuracy of the results. 
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Figure 12. the deflection of the four-bar mechanism’s third member in terms of the bar length for two 

different mass divisions 

Figure (13) depicts the first mass point of the first member of the mechanism for two different temporal 
divisions. The diagram is expressive of the idea that the deflections of the point undergo direction shifts twice 
during the given time span. In addition, the two similar diagrams for two different states are assertive of the 
idea that the results are correct. 

 
Figure 13. the deflection of the first mass point of the four-bar mechanism’s first member for two states 

featuring different temporal divisions 

Figure (14) illustrates the deflection of the mechanism’s first member for a given instant. The diagram 
shows that the two extreme ends of the member have no deflections and the midsection mass point 
features the highest deflection. 
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Figure 14. the deflection of the mass points of the four-bar mechanism’s first member based on bar length 

Figure (15) demonstrates the deflections of the second and the fourth mass points respectively for five and 
nine mass divisions for a fixed time span. The validity of the results is confirmed according to the fact that 
both these points are located in the middle part of the member for both of the states and both of the diagrams 
look similar. 

 
Figure 15. the deflections of the four-bar mechanism (midsection of bar)’s second and fourth mass points for 

various divisions based on bar length 

Figure (16) depicts the deflection of the first member’s second mass point for two different elasticity modules. 
The mass point deflection is lesser in a state the elasticity module of which is higher than the other. 
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Figure 16. the deflection of the four-bar mechanism’s second mass point for two different elasticity modules 

based on time 

Figure (17) demonstrates the deflection of the second member’s fourth point for two states featuring different 
cross-section diameters in time. The cross-section of the mass point is found reduced with the increase in the 
inertia moment and this is well complying with the reality so the results’ credibility is affirmed. 

 
Figure 17. the deflection of the fourth mass point of the four-bar mechanism’s second member for two 

different cross-sections in time 

Figure (18) displays the elastic deformation of the tenth mass point of the mechanism’s second member for 
two different states in different temporal divisions ranging from zero to three seconds. The two diagrams 
present better overlap with the increase in the number of the temporal divisions. As it can be seen, the two 
diagrams almost completely overlap one another and this underlines the accuracy of the results. 
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Figure 18. the deflection of the tenth mass point of the four-bar mechanism’s second member for two different 

temporal divisions in a given time 

Figure (19) exhibits the deflection of the mechanism’s second member in a given time for two different 
temporal divisions. The diagrams were frequently found overlapping in the temporal divisions which is 
indicative of the accuracy of the results. 

 
Figure 19. the deflection of the four-bar mechanism’s second member for two different temporal divisions 

based on member’s length 
 
Results 

To analyze a four-bar mechanism featuring elastic members, the present study firstly employed most widely 
used methods, including concentrated mass method and member deformation equations. Then, the member 
equilibrium equations were written to form a differential equation system assisted by the determination of 
mass points’ acceleration. In the end, the differential equations’ system was numerically solved and the 
deflections of the mechanism’s members were attained. 
In numerically solving differential equations using a computer program, the numerical method’s error is 
significantly reduced if the number of the temporal divisions for a limited time span is increased to the extent 
that it can be stated that the responses will not undergo changes with the increase in the temporal divisions 
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and a series of precise responses can be obtained. Increasing the number of the mass divisions in concentrated 
mass method makes the responses approach the element model. To decrease the members’ deflection, the area 
moment of inertia can be reduced or member featuring lower elasticity modules can be used to obtain more 
optimum conditions.  
As for the numerical solutions of the differential equations, the mass points’ velocity and acceleration, besides 
their deformations, are also computable considering the fact that there are also first and second derivatives 
extant in the equations. 
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