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Abstract: In recent decades, with the orientation of the power network towards changing and re-structuring 
in the market and industry mechanisms, Reactive power services are independent of other services as one of 
the topics of investment for different companies. As a result of these changes, the creation of an efficient 
model that covers more sections of the problem of reactive power planning, One of the most important 
principles of reactive power planning. For this reason, in this paper, the modeling of reactive power planning 
in order to reduce network losses,  Increasing voltage stability, increasing network reliability and reducing 
investment costs are considered as an opposite multi-goal problem. The reason for the contradiction is 
because of the different nature of the cost function, the loss, and the voltage You can not summarize all of 
these parameters in an objective function. The motivation for this article is to find an appropriate market 
approach and regulatory approach The management of reactive power is a long-term and non-linear problem 
in the studied system. A market design is proposed in which all available sources of reactive power are 
considered for participation. To solve the proposed problem, a multi-objective honey bee mating method 
(HBMO) has been used based on chaos theory. Also, the nonlinear sorting system and fuzzy mechanism are 
used to determine the best solution based on the set of solutions generated from the Pareto space. The 
proposed method has been discussed on various systems and the results have been compared with other 
methods. Finding the right answer, upgrading the best answer, and intersection of the generations are the 
hallmarks of this method. 
 

Keywords: Electricity Market Planning, Reactive Power Distribution, Pareto Criteria, Fuzzy Theory, HBMO 
Method. 

INTRODUCTION 

Nowadays, with the process of moving power systems towards creating competition and breaking the 

monopoly, the importance of side services such as power services Reactive and voltage control, rotation 

booking, regulator and more. Among these side services, the power supply and reactive power supply are 

more important. In spite of this, the reactive power transfer effect, in addition to affecting the losses of lines 

and the size of the shaft voltage, also affects the transmission of active power and its cost, Unfortunately, the 

cost of producing and transmitting reactive power has not paid much attention. One of the reasons for this 

lack of attention to the inherent difficulty of understanding this issue is, in particular, by economists  Other 

reasons for this lack of attention to reactive power are low costs of reactive power generation versus active 

power. Nevertheless, economically and in market calculations, reactive power has no lower value than active 

power. Managing and controlling reactive power in both traditional systems and in competitive systems has 

been one of the main concerns of operators. This issue faces more challenges in the restructured environment 
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because it requires a fair pricing method and a market design for reactive power. With regard to power 

pricing For example, in the reference (Baughman and Siddiqi, 1991), Rocketto has done some work on the 

electricity market, including the real-time pricing of reactive power in the traditional electricity industry. The 

authors of the paper, by completing the formulation of the problem,  The two references, the price (Baughman, 

M. L., Siddiqi, S. N., and Zarnikau, 1997; Baughman, M. L., Siddiqi, S. N., and Zarnikau, 1997), in the theory 

and application of real-time pricing have provided real and reactive power. Similar to (Baughman and Siddiqi, 

1991) with method 

Another reference has been made to the real-time real-time real-time and real-time power consumption, 

which is based on the use of optimal load distribution And their main difference is in the target function and 

the selected constraints (Li and David, 1993), while in the competitive environment, in order to provide the 

power system security and keep the bus voltages in the defined range, a separate market for the reactive 

power suppliers is necessary.  

In the redesigned system in References (Li, Y. Z., and David, 1994) and (Jong-Bae et al., 2005), reactive power 

pricing is examined by developing an active power pricing structure. Weber used the standard developed OPF 

to simulate active and reactive power prices (Hosam et al., 2000). HAO  also looked at the reference to 

economic and technical methods for the determination of reactive power structures and the design of a 

practical solution for the management and pricing of reactive power services (Granville, Pereira and 

Monticelli, 1988). In the above-mentioned methods, the problem of reactive power planning is considered as a 

goal function. The advantage of this model in simplifying implementation and its failure is not to examine 

other constraints imposed on the network. Also, design is not robust in this model, and the system may be 

impaired in unconventional operating conditions as the system is not modeled nonlinearly. On the other hand, 

the proposed algorithms do not have the proper function, because by modeling the system in a nonlinear 

state, the final solution is placed in the optimal local point. 

In this paper, multi-objective modeling for reactive power planning and its optimization with multi-objective 

honey mating algorithm based on chaos theory has been investigated in order to overcome these defects. For 

simultaneous solving of these functions, the nonlinear sorting system and entropy are used. Finally, a fuzzy 

mechanism has been used to determine an appropriate solution between the set of solutions generated. The 

proper speed of the algorithm, local search, amplified by chaos theory, and the use of Pareot criteria and 

nonlinear sorting are the hallmarks of this article. 

The following section is followed up in the following sections: In the second part of the modeling of the studied 

system, in the third part of the proposed algorithm based on the Pareto criterion, in Section 4, the results and 

analyzes of the study are discussed and finally, in the final section, Found. 

Proposed Problem Modeling 

With the increasing use of electric energy over the past decades, its supply systems have also expanded So 

that today the optimal distribution of reactive power for optimal planning and exploitation of power systems 

between energy generating units with the least cost is one of the most extensive and complex issues in the 

operation of the power system. The problem formulation for reactive power planning is defined by considering 

linear and nonlinear constraints as follows: 

Installation cost function: The function considered at this stage is based on minimizing the cost of investment 

and the fixed initial cost to optimize the number and size of the required equipment. This function can be 

expressed as follows (Estevam et al., 2010). 
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𝐽1 = 𝑚𝑖𝑛𝜔 = ∑[𝐶𝐹𝑋𝑖 , 𝑟𝑖 + 𝐶𝐶𝑖
. 𝑞𝐶𝑖

+ 𝐶𝑟𝑖
. 𝑞𝑟𝑖

]                                                                        (1)
𝑖=𝐼

 

𝑃𝑘(𝜃, 𝑉, 𝑡) − 𝐼𝐺𝑃𝐺𝑔 + 𝐼𝐿𝑃𝐺𝑙 = 0 

𝑘 ∈ 𝑁𝐵, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿                                                                                                (2) 

 

𝑄𝑘(𝜃, 𝑉, 𝑡) − �̂�𝐺𝑄𝐺𝑔 + �̂�𝐿𝑄𝐺𝑙 + �̂�𝑞(𝑞𝑐𝑖 − 𝑞𝑟𝑖) + �̂�𝑢(𝑞𝑐𝑖
0 − 𝑞𝑟𝑖

0) = 0                 (3) 

𝑘 ∈ 𝑁𝐵, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼, 𝑢 ∈ 𝑈, 𝑗 ∈ 𝐽 

 

𝑄𝐺𝑔
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑄𝐺𝑔 ≤ 𝑄𝐺𝑔

𝑢𝑝𝑝𝑒𝑟
, 𝑔 ∈ 𝐺                                                                                              (4) 

 

𝑉𝑘
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑢𝑝𝑝𝑒𝑟
, 𝑘 ∈ 𝑁𝐵                                                                                                     (5) 

𝑦1𝑗 ≥ 0, 𝑗 ∈ 𝐽                                                                                                                                     (6) 

𝑦2𝑗 ≥ 0, 𝑗 ∈ 𝐽                                                                                                                                     (7) 

𝑡𝑗 ∈ 𝑇, 𝑙 ∈ 𝑁𝑇                                                                                                                                     (8) 

0 ≤ 𝑞𝑐𝑚 ≤ 𝑞𝑐𝑚
𝑢𝑝𝑝𝑒𝑟

. 𝑟𝑚 , 𝑚 ∈ 𝑀                                                                                                      (9) 

0 ≤ 𝑞𝑟𝑚 ≤ 𝑟𝑐𝑚
𝑢𝑝𝑝𝑒𝑟

. 𝑟𝑚 , 𝑚 ∈ 𝑀                                                                                                     (10) 

𝑞𝑐𝑛 ∈ 𝑆𝑑𝑟𝑚 , 𝑛 ∈ 𝑁                                                                                                                            (11) 

𝑞𝑟𝑛 ∈ 𝑆𝑑𝑟𝑚 , 𝑛 ∈ 𝑁                                                                                                                             (12) 

𝑞𝑐𝑢
0 ∈ 𝑆𝑑 , 𝑢 ∈ 𝑈                                                                                                                                (13) 

𝑞𝑟𝑢
0 ∈ 𝑆𝑑 , 𝑢 ∈ 𝑈                                                                                                                                (14) 

𝑟𝑖 ∈ {0,1}, 𝑖 ∈ 𝐼                                                                                                                                  (15) 

In which the goal is to minimize function (1) in terms of cost reduction and reprogramming for reactive power. 

Equations (2) and (3) are static constraints for the production and reactive power equilibrium. Equation (4) 

shows the production limit for reactive power in the permitted range. Equation (5) covers the permissible and 

acceptable limits for reactive power in the studied system. 

Equations (6) and (7) show the positive value of the injectable amount of reactive power for the desired 

problem. Equation (8) shows the amount of discrepancy in chunk fever for the transformer studied in the 

proposed systems And equations (9) to (15) show the limitations in the continuous state and the discrepancy 

of the constraints. All of the above equations show (1) to (15) for determining the reactive power in the studied 

system Which is ultimately the ultimate solution to the problem These formulas will determine the correct 

planning for the reactive power and its optimal distribution in the studied systems. 

Loss function: Another important function in the planning of reactive power is to reduce the losses caused by 

the network, which will increase the efficiency of the network. To calculate network losses, Newtons Ruffson's 

relation to the following is used. 
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𝐽2 = 𝑃𝐿(𝑃𝐺 ) = ∑ 𝑔𝑘

𝑁𝐿

𝑘=1

[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗)]                                                          (16) 

In the above relation PG the power output is 𝑉𝑖𝑉𝑗 voltages at the beginning and the end of line i and j 

respectively 𝜃𝑖𝜃𝑗 are the angles at the beginning and the end of the line respectively. 

Voltage equalization: As stated above, one of the most important issues in the planning of reactive power is 

the voltage of the network Since the nature of the network voltage with the cost of investment (J1) And loss 

functions (J1), a new function called Network Voltage Unification, which indicates the difference between the 

value in each bus and the value obtained after each run of the load program, can be expressed as follows. 

𝐽3 =
1

𝑁
∑|𝑉𝑎𝑐𝑡 − 𝑉𝑑𝑒𝑠|

𝑁

𝑖=1

                                                                                                                 (17) 

Multi-Objective Algorithm  Hbmo 

In recent decades, evolutionary and superstructural methods have been used as a search and optimization 

tool in various fields such as science, commerce and engineering. The scope of the scope of application, ease of 

use, and the ability to achieve a near-optimal solution is one of the reasons for the success of these methods. 

One of these new optimization methods is the honeycomb mating algorithm. This algorithm is by Dr. Haddad 

Omid Haddad, who invented the ability to design and implement a honey-bee mating algorithm for solving 

optimization problems by studying bee-honey behavior. Honey bee mating can also be considered as a general 

method based on insect behavior for optimization, in which the search algorithm is inspired by the process of 

pairing in real bees. The behavior of bee honey is a reciprocal relationship between genetic, physiological and 

ecological conditions and social conditions, or a combination of the above. The study of the behavior of 

honeybee workers in queen feeding and mating flight design and develop a new algorithm that solves complex 

engineering problems with optimal help (Wang, Xiao and Ding, 2004). The main features of this algorithm are 

the queen's selective choice for mating with superior and selected male bees, mating, nourishing and feeding 

the children produced by the working bees, as well as feeding the queen by the working bees to reach the 

superior generation And as a result of finding the optimal response (Fathian and Amiri, 2007). 

The mating flight begins with a special dance by Queen. In this flight, the male bees are chasing the queen 

and doing the queen's mating in space. In each mating flight, typically a mammal mating with 7 to 20 male 

bees. At each mating, the sperm enters the sperm chamber and is collected there.  In fact, mating flight can be 

likened to a set of displacements in space and place (environment) in which the queen was flying at different 

points at different speeds and with the bee colonies at that moment and in that location Makes it randomly 

mating. It is obvious that at the beginning of the flight, the queen's energy pairing was at a certain level, and 

at the end of the path, when the queen returns to the honey, her energy decreases and becomes close to zero 

(Fathian and Amiri, 2007; Afshar, Bozog Haddad and Marino, 2008). 

Therefore, the optimization algorithm for biting mating can be summarized as follows: 

Queen pair: The algorithm begins with the flying assault The queen (the top answer) randomly chooses their 

pairs from male bees to fill their sperm chamber and finally produce new ones. At this stage, the queen (the 

best answer) is to take the pair with each male bee under the rolling probability function: 

𝑝𝑟𝑜𝑏(𝑄, 𝐷) = 𝑒
−∆(𝑓)

𝑆(𝑡) ≥ 𝑞0                                                                                                            (18) 

In which 𝑝𝑟𝑜𝑏(𝑄, 𝐷) the probability of adding sperm D to the volume of the sperm chamber of the queen Q is 

likely to be mating. ∆(𝑓) The difference between the queen and male bee fitting function, S(t) the queen's 

speed at moment t and q0 is a random value of (1,0). the queen's velocity and energy is reduced after each 

mating operation according to the following equation: 
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S(t+1)=a×S(t)                                                                                                                          (19) 

E(t+1)=E(t)-γ                                                                                                                          (20) 

Where a is a coefficient between (0.1) for reducing the queens velocity and γ is a coefficient of (0.1) for queen 

energy reduction after each mating operation. At the end of the mating flight, the amount of energy and 

velocity of the queen is reduced so that it can almost be considered zero. 

Generation of new kids (new answers): New baby boys (experimental answer) By displacement of male bee 

genes with Queen genes, they are created as follows: 

 

Child=parent1+β (parent2-parent1)                                                                              (21) 

In which, β is a random number between (0,1). 

Breeding and promotion of baby bees: At this stage, the working bees raise and upgrade the baby generation 

of the bees in accordance with the following: 

𝐵𝑟𝑜𝑜𝑑𝑖
𝑘 = 𝐵𝑟𝑜𝑜𝑑𝑖

𝑘 ± (𝛿 + 𝜀)𝐵𝑟𝑜𝑜𝑑𝑖
𝑘                                                                                                (22) 

𝛿 ∈ [0,1], 0 < 𝜀 < 1 

In this case, δ is generated randomly between (0,1) while ε is a constant number. 

Choosing the Queen: At this stage, after sorting the children as new questions, the problem is considered in 

relation to the progress made in the bees' generation based on the fitting function of the workers, The best of 

them is chosen and if you have a better fit than the queen available, the Queen's successor will make the next 

mooring flight in the mornings. Otherwise, the queen of existence (the best answer) (in order to produce new 

children (new answers), it enters into mating again. 

Check out the algorithm: If the requested conditions are satisfied in the algorithm, the queen is selected as 

the final answer. Otherwise, a new generation of male bees will be produced and will be repeated again all the 

stages before reaching the end of the problem. 

Figure 1 shows the basic steps in the HBMO algorithm. 

 
Figure 1: Modeling the HBMO algorithm 



Spec. j. electron. comput. sci., 2019, Vol, 5 (1): 41-57 

   46 

  

Using the Pareto method in the algorithm  HBMO 

As mentioned above, the concept of optimization is needed to solve optimization problems to a multi-objective. 

Based on the concept of overcoming or overcoming Pareto, we can define the optimality criterion in a multi-

objective problem: 

For two decision vectors X1 and X2, the vector X1 defeats the X2 vector if and only if two conditions exist.  

First, X1 is not worse than X2 for all targets, and secondly, X1 is at least X2 at least one target. The above 

statement is expressed in mathematical language (Lahanas et al., 2002,13). 

𝑋1 ≺ 𝑋1 ⇔ (∀𝑖∈ {1,2, … , 𝑛}: 𝑓1(𝑋1) ≤)                                                                                                             

𝑓1(𝑋2))∧(∃𝑖∈ {1,2, … , 𝑛}: 𝑓1(𝑋1) ≤ 𝑓, (2))                                                                              (23) 

Also, the vector of the decision of 𝑋 ∈ 𝑋𝑓  is read to the indefinite set𝐴 ⊆ 𝑋𝑓  if and only if 

∃0∈ 𝐴: 𝑋 ≺ 𝑎                                                                                                                           (24) 

X is Pareto optimal if and only if it is not occupied by Xf (Wang, Xiao and Ding, 2004). 

Therefore, it is possible to optimize the vector of the decision of X in the sense that no one of its goals can be 

improved without the other objective value worse.  Such an optimal answer is also called pareto or nepoust 

(Lahanas et al., 2002). 

The dark points on the Chinese line in Fig. (2) are Pareto's optimal answers. These points are indifferent to 

each other. A fundamental issue between the single-objective and multi-objective problem is here.  

Multiproblems are not limited to a single optimal solution, but they contain a set of optimal answers.  None of 

the answers can be considered superior to the other, unless decision-making preferences are defined. 

The set of all Pareto optimal solutions in a multi-objective problem is the Pareto optimal set and target 

vectors corresponding to that Pareto optimal front. The set of all decision-making vectors in the set A is 

assumed as follows: 

𝑃(𝐴) = {𝑎 ∈ 𝐴|𝑎 𝑖𝑠 𝑁𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝐴}                                                                             (25) 

The set P (A) is given by A for an indefinite series, and the corresponding set of vectors F (P (A)) is also an 

unlit edge. Plus set Xp = P(Xf) Pareto optimal pareto Yp = F(Xp) Pareto's optimal front is defined (Afshar, 

Bozog Haddad and Marino, 2008). In other words, when the set A is equal to the set of Xf  solutions, then the 

set P(A) produces the optimal Pareto front. An ideal point is a point in which the values of all objective 

functions are minimal. Obviously, there is usually no ideal point in the region of the target space.  An ideal 

point is also a point in which the values of all target functions are maximized (Wang, Xiao and Ding, 2004). In 

Figure (3), an illustration of a partout, an ideal point and an ideal ideal are depicted. 

 

Figure 2  . Representation of Pareto's Optimal Image in the Purposeful Space 
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Figure 3. Pareto Front, Ideal Point and Ideal Point in Target Space 

 

The Pareto Front gives information on the balance between goals. This equilibrium reflects the sensitivity of 

goals to each other and can be explained by the shape of the Pareto front. 

HBMO algorithm based on chaos theory 

One of the new ideas in solving complex problems with nonlinear functions is to use chaotic search method 

with intelligent methods in order to increase the capability of the standard algorithm. Chaotic Method is a 

method based on nonlinear and nonconvex functions that has been considered more and more today. In this 

paper, the following equation is used to improve the local and final search of the proposed algorithm. 

𝑐𝑥𝑖+1
𝑗

= {
2𝑐𝑥𝑖

𝑗
, 𝑖𝑓0 < 𝑐𝑥𝑖

𝑗
≤ 0.5

2(1 − 𝑐𝑥𝑖
𝑗), 𝑖𝑓0.5 < 𝑐𝑥𝑖

𝑗
≤ 1

, 𝑗 = 1,2, … , 𝑁𝑔                                                        (26) 

In the above equation, CX represents chaotic particles. Ng is the number of chaotic particles used in each 

optimization step. 

Combine fuzzy logic with proposed algorithm 

Fuzzy logic is a method used to determine their nonlinear classification. The fuzzy decision function is 

introduced with a membership function that can be used to locate the exact variables in it. Figure 4 shows the 

membership function μc for a fuzzy variable. This fuzzy variable represents the concept of the total cost of 

fuel. 

 
Figure 4. The membership function for the cost function and the voltage loss factor and the matching of the 

voltage 
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If the decision maker is completely satisfied with the total cost of the fuel, then μc = 1, and if the μc = 0 is the 

opposite, it indicates that the decision maker is completely dissatisfied. Therefore, the membership function 

value represents the level of economic viability of the index. Due to the inaccurate nature of decision making 

and decision making for decision-makers, the corresponding target function has a non-dominated solution. 

The set fi(Pgi) is expressed by the membership function 𝜇𝑖(𝑃𝑔𝑖)  whose formula is as follows: 

 

𝜇𝑖 =
𝑓𝑖

𝑚𝑎𝑥 − 𝑓𝑖

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛                                                                                                                                   (27) 

Which  𝑓𝑖
𝑚𝑖𝑛and 𝑓𝑖

𝑚𝑎𝑥  is the upper limit of the lower limit of the objective function i. 

 

𝐹𝐷𝑀𝑖 = {

0                 𝜇𝑖 ≤ 0

𝜇𝑖                    0 < 𝜇𝑖1
1                   𝜇𝑖 ≥ 1

                                                                                                           (28) 

For each k non-Dominated solution, the normalized FDMK membership function is as follows. 

 

𝐹𝐷𝑀𝑘 = [
∑ 𝐹𝐷𝑀𝑖

𝑘2
𝑖=1

∑ ∑ 𝐹𝐷𝑀𝑖
𝑗2

𝑖=1
𝑀
𝑗=1

]                                                                                                               (29) 

The best way to solve an economic load distribution problem is to first consider the maximum FDMK value for 

the fuzzy decision function. ( M is the total number of non-dominated solutions ) 

Then all solutions are arranged in descending order, respectively, and the decision maker, according to the 

membership function value under actual operating conditions, chooses the best solution among non-

dominated solutions according to the priority list. 

How to apply the algorithm to the studied problem 

In this section, we describe the applied model for solving the problem of reactive power planning using the 

proposed algorithm. The generated model can be followed in the following steps. 

First step: At this stage, considering the mod dedits imposed by the problem of the set of initial answers in 

the search space, we consider. 

 

𝑋𝑐𝑖𝑠
0 = [𝑋𝑐𝑖𝑠,0

1 , 𝑋𝑐𝑖𝑠,0
2 , … , 𝑋𝑐𝑖𝑠,0

𝑁𝑔
]

𝑙𝑥𝑁𝑔
 

𝑐𝑥0 = [𝑐𝑥0
1 , 𝑐𝑥0

2, … , 𝑐𝑥0
𝑁𝑔]                                                                                                                     (30) 

𝑐𝑥0
𝑗

=
𝑋𝑐𝑖𝑠,0

𝑗 − 𝑃𝑗.𝑚𝑖𝑛

𝑃𝑗.𝑚𝑎𝑥 − 𝑃𝑗.𝑚𝑖𝑛

, 𝑗 = 1,2, … , 𝑁𝑔 

Which we will have for this equation: 

𝑋𝑐𝑖𝑠
𝑖 = [𝑋𝑐𝑖𝑠,𝑖

1 , 𝑋𝑐𝑖𝑠,𝑖
2 , … , 𝑋𝑐𝑖𝑠,𝑖

𝑁𝑔 ]
𝑙𝑥𝑁𝑔

, 𝑖 = 1,2, … 𝑁𝑐ℎ𝑜𝑜𝑠                                                                         (31) 

𝑋𝑐𝑖𝑠,0
𝑗

= 𝑋𝑖−1
𝑗

× (𝑃𝑗.𝑚𝑎𝑥 − 𝑃𝑗.𝑚𝑖𝑛) + 𝑃𝑗.𝑚𝑖𝑛 , 𝐽 = 1,2, … , 𝑁𝑔 

Also, for the objective function equations (1) the following constraint set should be considered in accordance 

with Table 1. 
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Table 1. Initial Parameters 

 Variables Operation Investment 

 𝑉𝑘 , ∀𝑘 ∈ 𝑁𝐵 𝑞𝑐𝑚 , 𝑚 ∈ 𝑀 

Continuous 𝜃𝑘 , ∀𝑘 ∈ 𝑁𝐵 𝑞𝑟𝑚, 𝑚 ∈ 𝑀 

 𝑄𝐺𝑔, ∀𝑔 ∈ 𝐺  

 𝑡1 , ∀𝐴𝑙 ∈ 𝑁𝑇 𝑟𝑚, 𝑚 ∈ 𝑀 

Discrete 𝑞𝑐𝑢
0 , ∀𝐴𝑢 ∈ 𝑈 𝑞𝑐𝑛 , 𝑛 ∈ 𝑁 

 𝑞𝑟𝑢
0 , ∀𝐴𝑢 ∈ 𝑈 𝑞𝑟𝑛 , 𝑛 ∈ 𝑁 

 

The second step: In this section, chaotic variables can be computed with respect to the chaotic function as 

follows. 

𝑐𝑥𝑖 = [𝑐𝑥𝑖
1 , 𝑐𝑥𝑖

2, … , 𝑐𝑥𝑖
𝑁𝑔], 𝑖 = 0,1,2, … , 𝑁𝑐ℎ𝑜𝑜𝑠 

𝑐𝑥𝑖+1
𝑗

= {
2𝑐𝑥𝑖

𝑗
, 𝑖𝑓 0 < 𝑐𝑥𝑖

𝑗
≤ 0.5

2(1 − 𝑐𝑥𝑖
𝑗), 𝑖𝑓0.5 < 𝑐𝑥𝑖

𝑗
≤ 1

, 𝑗 = 1,2, … , 𝑁𝑔                                                                (32) 

𝑐𝑥0
𝑗

= 𝑟𝑎𝑛𝑑(0) 

In the following, the value of the threshold coefficient for the input matrix sort is set to 0/7. In the above 

statement G best is the best value found in step k. 

Step Three: For this population, a fitness is calculated for each generated population, which is based on the 

equation (1) and (16) and (17). 

Step Four: Generating defined variables based on decision functions in the gravity search function.  

Step Five: Upgrading the particle obtained in relation to the ratio of the acceleration and velocity of each 

particle by the relations (18) to (25). 

Step Six: Check the terms of the program. If the program is closed, print the answers shown otherwise if the 

answer is better at this stage than the previous one. Replacing it and, if worse, keeping the same answer back 

and upgrading the generations. Figure 5 shows how to search with different constraints. 

Figure 6 shows the flowchart of the proposed algorithm to solve the prediction problem. 

 
Figure 5: How to search in the studied space 
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Figure 6: The prediction system for the proposed algorithm 

Examined systems and simulation results 

In order to simulate the content software version 2009 with a computer with a 2. 53 GHz processor has been 

used. Simulation has been followed up in several scenarios with the studied systems. The following is a 

continuation of the analysis of the results and data. 

Standard 30 Bass System 

The first system studied is the IEEE standard system with 30 bass, 5 generators and 41 branches. Basses 2, 

5, 8, 11, 13, and 30 are selected as the candidate bases for the discrete reactive power development. Limit 

values and demand for this load boss are shown in Table 2. The step value for reactive power sources is (Δn = 

2Mvar)  and the safety coefficient is (ε = 3%).  Also, normal load and heavy load (%103) and a line for random 

probability (2-1) are considered. Also, the upper and lower values for voltages are considered equal to 0.95 and 
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1.05 perion. The results of the simulation are presented in Table 3. Pareto convergence and distribution are 

shown in Figure 7 for heavy and normal loads. 

 

Table 2. Information for the IEEE 30 Bass System 

BUSES CFXI,US$ CCI AND CRI, US$/MVAR 𝑞𝑐𝑚
𝑢𝑝𝑝𝑒𝑟

𝑎𝑛𝑑 𝑞𝑟𝑚
𝑢𝑝𝑝𝑒𝑟

 Mvar 

2 30 1 30 

5 30 1 45 

8 15 1 40 

11 30 1 40 

13 35 1 30 

30 30 1 30 

 

Table 2. Simulation results for the 30-bos system 

MET 

HOD 

B&B ALGORITHM (Li and David, 

1993) 
PROPOSED ALGORITHM 

Load 

Level 
Buses 

Base 

Case 

Contingency 

Buses 

Base 

case 

Contingency 

#1:1-2 #1:1-2 

qci, 

MVAr 
qci, MVAr 

qci, 

MVAr 
qci, MVAr 

Nominal 

2 - 30 2 - 29 

5 - 18 8 - 40 

8 - 40 11 - 10 

W - US$ 163 W - US$ 158 

CPU 

Time 
1s 34s 

CPU 

Time 
0.99s 27s 

Heavy 

2 - 30 2 - 30 

5 - 28 5 - 25 

8 - 40 8 - 40 

13 - 14 11 - 16 

W - US$ 222 W - US$ 216 

CPU 

Time 
1s 30s 

CPU 

Time 
0.98s 27s 

 
 

 

Figure 7. Distribution of pareto criterion for heavy load (a) and light load (b) 
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As shown in Table 3, the system under study did not need reactive power in the nominal load and heavy load, 

which was confirmed by two algorithms. 

Also, the results of Table 3 show that the basses found using the proposed method are in the normal state of 

2, 8 and 11 and in heavy load states 2, 5, 8 and 11 with the total injection capacity in normal and heavy 

states, respectively 79 and 111 Megavar is Compared to the proposed method in the paper (Estevam et al., 

2010), which is 88 and 112 mega-watts, it is 8 and 4 megawatts.  On the other hand, the overall cost for the 

proposed method is as much as 9 units in nominal load and 7 units in heavy load compared to the method 

used in the reference. Also, a comparison is made for the implementation time of the programs The speed of 

the proposed method is better. Figures 8 and 9 show the voltage distribution for the studied system. Better 

and more balanced distribution of voltage indicates better solutions than the proposed method in reference 

(Estevam et al., 2010), because in this method, the voltage regulator is also considered as a target function for 

minimization of volatility. Also, the amount of losses perjunit unit was 1.34% in nominal state 2.67% in heavy 

duty mode. 

 
Figure 8. Distribution of voltage in the system under study. 30 Bass for nominal load 

 

Figure 9: Distribution of voltage in the system studied by 30 bauss for heavy load 

 

System 118 is IEEE 

In order to illustrate the proposed method and to apply a nonlinear model, the IEEE 118base system with 54 

units of power plant as a larger and more efficient system, with its network connections shown in Figure 10. 

In this system, 13 bass are considered for reactive power injection, which is shown in Table 4. In this system, 
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lines (5-8, 26-30, 65-68, 89-92) are considered for random operation. The results of the simulation are 

presented in Table 5. Also, for simulation in this system three names, style (80%) and heavy load (120%) have 

been used. 

 

Table 4. Information for the IEEE 118base system 

BUSES CFXI,US$ CCI AND CRI, US$/MVAR 𝑞𝑐𝑚
𝑢𝑝𝑝𝑒𝑟𝑎𝑛𝑑 𝑞𝑟𝑚

𝑢𝑝𝑝𝑒𝑟  Mvar 

10 12 1 100 

12 10 1 100 

21 10 1 100 

31 10 1 100 

35 5 1 100 

49 5 1 100 

56 10 1 100 

60 5 1 100 

71 10 1 100 

76 5 1 100 

83 10 1 100 

85 5 1 100 

94 10 1 100 

As shown in the table, the production and bases for reactive power planing for different operating conditions 

are less costly than the method used in reference (Estevam et al., 2010), which is a comparative result in 

Table 6 of the sign Given. 

The proposed algorithm has a better combination of reactive power resources. As shown in Table 6, the 

proposed algorithm also has a higher rate compared to the proposed method in (Estevam et al., 2010). 

 
Figure 10. How to connect an IEEE 118Base system 
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Figure 11 shows the distribution of answers based on the Pareto criterion. Regular continuity between the set 

of answers indicates the proper design for the problem of reactive power planning. Also, the voltage 

distribution for both light and heavy mode is shown in Figures 12 to 13. The casualties for both normal and 

heavy cases decreased by 0.39% and 1.32% respectively. 

 
Figure 11. Distribution of pareto criterion for heavy load (a) and load rating (b) 

 

Table 5. The simulation results for the Bash system 118 with the proposed algorithm 

Load 

Level 
Buses 

Base case 
Contingency 

#1:5-8 #2:26-30 #3:65-68 #4:89-92 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

qri, 

MVAr 

Normal 

10 - - - 12.00 12.00 - - - 5.309 - 

21 - - - - - - - 80.0 - - 

60 - - - - - - 23 - 23 - 

85 23 - 23 - 23 - - - 52.019 - 

W US$ 26 US$ 52.52 US$ 52.34 US$28.91 US$ 98.73 

CPU time 1.99s 2.88s 1.82s 2.88s 10.13s 

Low 

12 - - - 12.01 - - - - - - 

w - - - - - 

CPU time 1s 1s 1s 1s 1s 

Heavy 

10 - - - 12.00 - - - - - - 

12 - - 75.00 - - - - - - - 

21 - - 12.00 - 35.00 - - - - - 

60 58.40 - 60.14 - 60.00 - 50.00 - 50.00 - 

83 36.80 - - - - - - - 70.00 - 

85 - - 35.45 - 35.44 - 35.43 - 70.00 - 

94 36.50 - 35.45 - 35.45 - 35.43 - 50.50 - 

           

w US$ 156.0 US$ 276.12 US$ 201.44 US$ 157.33 US$ 289.62 

CPU time 40s 45s 30s 28s 19s 
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Table 6. Results obtained for the methods performed in the 118 Bass system 

Proposed 

Algorithm 

Level Load Index Base case #1:5-8 #2:26-30 #3:65-68 #4:89-92 

Normal W 26 52.52 52.34 28.91 98.73 

 CPU Time 1.99 2.88 1.82 2.88 10.13 

Low W 0 0 0 0 0 

 CPU Time 1 1 1 1 1 

Heavy W 30 54.5 52.5 30 102.5 

 CPU Time 2.45 0 0 0 0 

B&B 

Algorithm (Li 

and David, 

1993) 

Normal W 30 54.5 52.5 30 102.5 

 CPU Time 2 3 3 2 12 

Low W 24.5 0 0 0 0 

 CPU Time 1 1 1 1 1 

Heavy W 162.5 294.5 210 162.5 292.5 

 CPU Time 40 45 30 28 19 

 

 
Figure 12. The distribution of voltage in the studied system is 118 Bass for the rated load 

 

 

Figure 13. Voltage distribution in the studied system 118 Bass for heavy load 
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In order to demonstrate the efficiency of the proposed algorithm in solving the problem of reactive power 

programming, the proposed algorithm is implemented differently in the name of the load and load on the 118 

Bass system separately. The target function is the cost function, the loss function and the voltage. Figure 14 

shows how to change the mean standard deviation for the convergence path in Figures 6 and 7. The standard 

deviation for the final answer is 0/0000001. 

 
Figure 14. Standard deviation for the average achieved from various performances 

Conclusion 

In this paper, we investigate the sources of reactive power for controlling the re-structured electricity market 

and its modeling in a nonlinear system with practical and non-practical constraints. The non-linear problem 

has been transformed into a multi-objective optimization problem and attempts have been made to solve the 

multi-objective hierarchy proposed by the Pareto criterion algorithm. The proposed algorithm has been 

investigated on the IEEE standard system of 30 and 118 buses. To compare the algorithm with different 

frequency, its standard deviation is investigated. Optionally, the upgrade of the generation, the higher speed 

and the use of the Pareto criterion are its prominent features. 
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