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Abstract: Cochlear implants are being widely used for the patients with severe to profound sensorineural 
hearing loss. Speech coding algorithms play an important role in improving the performance of cochlear 
implant. At recent years, the performance of CI has been improved for most users under silent environment. 
However, as the background noise level increases, speech recognition scores are degraded considerably. In 
this paper, the Empirical Mode Decomposition and Teager-Kaiser Energy Operator are applied as a speech 
enhancement method for cochlear implants. This algorithm is developed to extract features, called intrinsic 
mode functions, by a sifting process. Then, Frequency and amplitude of each IMF is extracted based on 
TKEO. Finally, performance of this algorithm in terms of correlation analysis was compared to continuous 
interleaved sampling (CIS), frequency amplitude modulation encoding (FAME) and Hilbert Huang Transform 
Stimulating (HHTS) strategies. The results showed the highest correlation coefficient between spectrum of 
synthesized signal and original speech with proposed method. 
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INTRODUCTION 

Cochlear implant (CI) is an electronic prosthetic device surgically implanted into the inner ear for restoring 

some degree of hearing of profoundly deaf patients with sensory-neural origin [1]. It includes internal and 

external components. The external part consists of a microphone that picks up sound, a signal processor that 

converts sound into electric impulses, and a transmitter that is magnetically attached to the internal device to 

which it transmits the electric impulses via radio waves. The impulses are sent to an array of electrodes, 

which are surgically inserted into the cochlea. The electrodes stimulate the auditory nerves, providing 

auditory information to the brain [2]. Most CI users achieve 80% word recognition scores in quiet listening 

conditions [3]. However, speech recognition scores are degraded in noisy conditions [4]. Several studies have 

been proposed to develop speech processing techniques for CI. In CIS strategy, envelope characteristics of 

speech signal are extracted [5]. It utilizes a filter-bank for the frequency decomposition of incoming speech 

which is a simplification of frequency decomposition function of biological cochlea. Outputs from each channel 

of the filter-bank are used to modulate the amplitudes of electrical stimulation pulses. In FAME strategy, 

envelope, frequency and phase information are extracted. This algorithm provides too much indiscriminate 

information. These techniques are not successful in providing time and frequency resolutions at the same 

time. Wavelet Transform (WT) overcome the limitations of the previous methods by providing both time and 

frequency resolutions [6]. However, it suffers to analyze non-stationary signals like speech and depends on 

the basis wavelet. In the last decade, a new nonlinear technique, termed empirical mode decomposition 
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(EMD), has been introduced by N. E. Huang et al. [7] for adaptively representing non stationary signals.  The 

most  important  characteristic of EMD  is  that  the basis functions are  directly  derived  from  the  speech 

signal itself. HHTS strategy [8] is used to encode both temporal envelope and instantaneous frequency (IF) of 

input speech signal for CI. While this strategy has allowed cochlear implant users to achieve good speech 

recognition in quiet, their performance in noisy condition is severely compromised. Also, an IF has a true 

meaning only for mono component signals, where there is only one frequency or at least a narrow range of 

frequencies varying as a function of time. This definition of IF is doubtful and will mislead analysis of 

instantaneous frequency, such as negative frequency [9]. In this paper, we propose a new algorithm based on 

the EMD technique and Teager-Kaiser Energy Operator (TEO) applied to modes. TEO can track the energy 

and detect the instantaneous frequency and instantaneous amplitude of mono-component AM-FM signal [10]. 

The basic idea is to reconstruct the signal with using TEO to extract amplitude and IF of each IMF. This 

paper is outlined as follows. Section 2 describes theoretical overview of EMD (Section 2.1), TEO (Section 2.2), 

and stimulation of new algorithm for CIs (Section 2.3) are described. Section 3 covers the results. Section 4 

devotes to the conclusion. 

1. Material and Methods 

 

2.1. Theoretical overview of EMD 

The Empirical Mode Decomposition (EMD) has been proposed as an adaptive time-frequency data analysis 

method [7]. This adaptive technique is derived from the simple assumption that any signal consists of 

different intrinsic mode functions (IMFs) each of them representing an embedded distinctive oscillation on a 

separated time-scale. An IMF is defined by two criteria: i) the number of extrema and of zero crossings must 

either equal or differ at most by one, and, ii) at any instant in time, the mean value of the envelope defined by 

the local maxima and the envelope of the local minima is zero. The following plan offers an idea about the 

principle algorithm of the EMD: 

1. Initialize 𝑟0(𝑡) = 𝑥(𝑡); 𝑗 = 1 

2. Extract the 𝑗_𝑡ℎ IMF: 

(a) Initialize ℎ0(𝑡) = 𝑟𝑗(𝑡); 𝑘 = 1  

(b) Locate local maxima and minima of ℎ𝑘−1(𝑡) 

(c) Cubic spline interpolation to define upper and lower envelope of ℎ𝑘−1(𝑡)  

(d) Calculate mean 𝑚𝑘−1(𝑡) from upper and lower envelope of ℎ𝑘−1(𝑡) 

(e) Define ℎ𝑘(𝑡) = ℎ𝑘−1(𝑡) − 𝑚𝑘−1(𝑡)  

(f) If stopping criteria are satisfied then ℎ𝑗(𝑡) = ℎ𝑘(𝑡) else go to 2. (b) with 𝑘 = 𝑘 + 1 

3. Define 𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − ℎ𝑗(𝑡)  

4. If 𝑟𝑗(𝑡) still has at least two extrema then go to 2. (a) with 𝑗 = 𝑗 + 1 else the EMD is finished 

5. 𝑟𝑗(𝑡) is the residue of 𝑥(𝑡) 

At the end of this numerical sifting process the signal 𝑥(𝑡) can be expressed: 
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𝑥(𝑡) = ∑  ℎ𝑗(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑗=1

 

Where ℎ𝑗(𝑡) indicates the 𝑗_𝑡ℎ IMF, 𝑛 as the number of sifted IMF and 𝑟𝑛(𝑡) denotes a residue which 

can be understood as the trend of the signal. 

 

1.2.  Teager Kaiser Energy Operator (TKEO)  

It is shown that the TKEO can track the energy and identify the instantaneous frequency (IF) and the 

amplitude of a signal [10]. The TKEO, ψ (.) is defined for continuous-time signal: 

 

 ψ[x(t)] = [𝑥̇(𝑡)]2 − 𝑥(𝑡)𝑥̈(𝑡) 

where 𝑥̇(𝑡) and 𝑥̈(𝑡) are the first and the second time derivatives of  𝑥(𝑡) respectively. In the discrete case, the 

time derivatives may be approximated by time differences. The discrete-time counterpart of TKEO becomes: 

ψ[x(t)] = 𝑥2(𝑛) − 𝑥(𝑛 + 1). 𝑥(𝑛 − 1) 

An essential characteristic of TKEO is that it is approximately instantaneous. This is because only three 

samples are required for the energy computation at each time instant. This time resolution provides us with 

ability to capture the energy fluctuations. Furthermore, implementation of this operator is very easy. The 

Energy separation algorithm (ESA) [11] uses the TKEO to separate  𝑥(𝑡)  into its amplitude envelope  𝑎(𝑡)  

and IF signal  𝑓(𝑡) to achieve mono-component AM-FM signal demodulation:  

𝑓(𝑡) ≈
1

2𝜋
√

Ψ[𝑥̇(𝑡)]

𝜓[𝑥(𝑡)]
 

|𝑎(𝑡)| ≈
𝜓[𝑥(𝑡)]

√𝜓[𝑥̇(𝑡)]
 

The ESA is less computationally complex and has better time resolution than other demodulation methods 

such as the Hilbert transform. 

1.3. Stimulation of New Algorithm for CIs 

Figure 1 is a block diagram representing acoustic synthesis of proposed algorithm. One of the first processing 

steps in cochlear implants is to apply pre-emphasis to the signal. The pre-emphasis filter attenuates low 

frequencies and amplifies high frequencies, to compensate for the typical 6 dB/octave spectral roll-off of 

speech signals. It makes the low-energy, high-frequency consonants to stand out better against the high-

energy, low-frequency vowels.  
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Figure 1- Block diagram of New Algorithm for CIs 

Then the signal is processed through empirical mode composition, in each band, using the TKE operator, the 

IF and amplitude of each of them are calculated. The envelopes of the derived IMFs are then extracted by low-

pass filtering (LP).The cutoff frequency of LP is typically 400 Hz. Finally, envelope matching is needed to map 

the decomposed signal to the dynamic range of the human ear. For this purpose, a nonlinear logarithmic 

function (NLM, as shown in figure 1) is used [12]. At the same time, in another path the frequency is derived 

from each band. After low pass filtering (LP), the frequency depth of processed signal in each band is limited 

at about 500Hz. At last, synthesized speech signal could obtain by summarizing each sub-band’s stimuli. 

2. Results 

 

The cross-correlation between spectrums of synthesized and original signals was calculated, showing the 

power of this method and its capability in representation of a high percentage of the original signal for the 

implant user. Correlation coefficients were obtained in different environmental conditions (quiet, 5dB, 10dB, 

15dB). In this computer simulation, Noisy92 sentences as database were processed by CIS, FAME, HHTS and 

proposed algorithm. Table 1 shows correlation coefficient between spectrum of reconstructed signal and 

original one which is deteriorating for each speech coding algorithm with noise increasing. This indicated that 

regardless of the type of algorithm, the efficiency of encoding can be reduced by increasing of noise. The 

performance of proposed algorithm is better than other three algorithms in four different environmental 

conditions.  

Table1-Mean values of absolute correlation coefficients 𝑟̅    

Listening 

condition 

CIS FAME HHT Proposed 

algorithm 

Quiet 0.0892 0.3174 0.4347 0.5320 

5 dB 0.0041 0.3060 0.4122 0.4621 

10 dB 0.0038 0.2974 0.4009 0.4103 

15 dB 0.0036 0.2795 0.3793 0.4021 
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4. Conclusion 

 In this paper, we presented a new algorithm based on the EMD technique to decompose the input signal 

into different frequency bands and Teager-Kaiser Energy Operator (TEO) applied to modes to extract 

amplitude and IF of each IMF. The TEO is less computationally complex and has better time resolution 

than other demodulation methods such as the Hilbert transform. Reconstruction of the decomposed signal 

showed that our technique can produce the processing with higher correlation than other methods.   
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